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Absorbing boundary conditions are needed for computing numerical 
models of wave motions in unbounded spatial domains. Prior progress 
on this problem for acoustic and elastic waves has generally been con- 
cerned with waves propagating through uniform media. The present 
paper is concerned with waves in stratified media, which are of interest, 
for example, in geophysical problems. Suppose that the medium con- 
sists of homogeneous layers separated by parallel horizontal interfaces, 
and suppose that absorbing boundary conditions are needed along a 
vertical computational boundary. The boundary conditions that are 
described in this paper are based on a quantity known as the “ray 
parameter.” According to Snell’s law, this parameter remains the same 
when a plane wave propagates through a stratified medium and under- 
goes reflection, refraction, and, in the case of elastic waves, conversion. 
Once can therefore use the same absorbing boundary conditions in all 
layers. For acoustic waves, the absorption properties are the same in all 
layers. For elastic waves, the absorption properties vary somewhat from 
one layer to another; however, one still obtains good absorption in all 
layers, even in the presence of strong contrasts between layers. The 
boundary conditions are also effective in absorbing Rayleigh waves, 
which propagate along free surfaces of elastic media. The boundary 
formulas developed here can be applied without modification to 
problems in both two and three dimensions. 0 1992 Academic PUSS. I N  

1. INTRODUCTION 

Absorbing boundary conditions for acoustic and elastic 
waves have been the subject of a great deal of research 
in recent years. Most, if not all, of the progress on this 
subject has been concerned with wave propagation in 
homogeneous media. However, nonhomogeneous media 
are encountered in many applications. In this paper, we 
consider the particular case of layered media, which are of 
interest, for example, in geophysical problems. We show 
that the absorbing boundary conditions developed by the 
author in [S-lo] for homogeneous media are also effective 
in the present situation, even in the case of strong contrasts 
between layers. For the case of elastic waves, the boundary 
conditions are also shown to be effective near a free surface. 

The motivation for this work is as follows. In many physi- 
cal problems, the spatial domain is unbounded. However, 

when a numerical solution to such a problem is computed, 
it is necessary to reduce the problem to a bounded domain 
of manageable size. A typical approach is simply to truncate 
the original physical domain. It then becomes necessary 
to find boundary conditions to impose at the artificial 
computational boundary that is thereby introduced. If the 
physical process is a wave motion that arises entirely within 
the computational domain and if there are no mechanisms 
beyond the computational boundary that cause reflection 
back toward that domain, then the solution near the bound- 
ary consists of outgoing wave motions. It is then reasonable 
to seek boundary conditions that simulate the outward 
radiation of energy. The classical Dirichlet boundary condi- 
tion is unsuitable for this purpose, as it generates large 
reflections back into the interior, and these reflections 
degrade the solution that is computed. Instead, one wants 
“absorbing” boundary conditions which generate little or 
no reflection. 

In the configuration examined in this paper, the spatial 
domain consists of homogeneous layers separated by 
parallel horizontal interfaces, and the principal problem is 
to study absorbing boundary conditions that are imposed 
along a vertical computational boundary. (Along a hori- 
zontal computational boundary, the medium is locally 
homogeneous, so in that case the behavior of absorbing 
boundary conditions is the same as for homogeneous 
media.) It is assumed that a wave is moving downward 
through the uppermost layer, and this wave then generates 
wave motions in lower layers. In some numerical computa- 
tions involving elastic waves that are described later, the 
medium also includes a horizontal free surface at the top of 
the uppermost layer, and waves also propagate along this 
surface. 

Prior work on absorbing boundary conditions for 
acoustic or elastic waves includes [3, 5-12, 14, 16, 18-211. 
For various reasons, this work has generally been restricted 
to media that are homogeneous near the computational 
boundary. In some cases, the restriction arises from the use 
of Fourier transforms in the direction parallel to the bound- 
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ary, which is valid if the medium is uniform in that direction. 
These transforms have been used in the derivation and/or 
analysis of boundary conditions (e.g., [3, 5, 6, 8-10, 14, 16, 
211) and have also been used explicitly in computational 
algorithms (e.g., [18]). A related issue is that absorbing 
boundary conditions frequently involve derivatives in the 
direction parallel to the boundary. If such a boundary con- 
dition is approximated by finite differences, the discrete 
boundary operator will then involve tangential shifts; the 
tangential derivatives are typically of even order, and the 
corresponding difference approximations are generally 
centered. On the other hand, one might want one-sided 
differencing or no tangential differencing at all at points 
where a computational boundary intersects an interface, 
due to discontinuities in the material parameters. 
Analogous remarks apply to a point where a computational 
boundary intersects a free surface and to other corners of 
the computational domain. 

In physical terms, some difficulties with stratified media 
can be described as follows: Suppose that a plane acoustic 
or elastic wave is incident upon a discontinuity in the 
medium. In general, the wave does not simply pass without 
modification through the interface, but instead can be 
reflected and/or refracted at the interface. In the case of 
elastic waves, there is an additional complication. In the 
interior of an elastic medium, there can be two kinds of 
waves: P-waves (primary, or compressional) and S-waves 
(secondary, or shear). For P-waves, the particle motions are 
parallel to the direction of wave propagation; for S-waves, 
the particle motions are perpendicular to the direction of 
propagation. During the process of reflection and/or refrac- 
tion, each type of wave can be partially or totally converted 
to the other type. Overall, for either acoustic or elastic 
waves, a single incident wave can produce a wave system of 
great complexity if several interfaces are present. In prin- 
ciple, this situation can lead to problems in constructing 
and analyzing boundary conditions that are capable of 
giving good absorption for all of the various waves in this 
system. 

A unifying principle for wave propagation in stratified 
media is given by Snell’s law, which states that a certain 
parameter (the “ray parameter”) remains invariant under 
reflection and refraction, and, in the case of elastic body 
waves, also under conversion. A main point of the present 
paper is that the absorbing boundary conditions developed 
by the author in [SGlO] can be interpreted as being based 
on this parameter. This implies that along a vertical com- 
putational boundary in a horizontally stratified medium, 
one can apply the same boundary operator in all layers. The 
operators that are used for acoustic waves are very similar 
to the ones that are used for elastic waves. For acoustic 
waves, it will be shown that the absorption properties of the 
boundary conditions are independent of the layer. For 
elastic waves, which are more complicated, this is not quite 

the case. However, the absorption properties do not vary 
greatly from one layer to another, and the boundary condi- 
tions yield good absorption in all layers, even in the 
presence of strong contrasts between layers. 

The boundary conditions can be approximated by finite 
difference equations that use values of the solution only 
along grid lines that are perpendicular to the boundary. 
These difference equations have the following advantages. 
First, the same formulas apply without modification to 
problems in both two and three dimensions. Second, for 
reasons discussed in Section 4, the one-dimensional stencil 
provides for convenient implementation near interfaces, 
near a free surface, and near corners. Third, at each time 
step, each horizontal grid row is independent of other 
horizontal rows, provided that an explicit difference scheme 
is used in the interior. This is useful if solutions are 
computed in parallel. 

Some empirical investigations [4, 171 have suggested 
that various earlier absorbing boundary conditions for 
elastic waves may be unstable if the ratio of S-wave velocity 
to P-wave velocity is sufficiently low. Low values of this 
ratio are found in materials of relatively low rigidity, 
including some that are of interest in seismic petroleum 
exploration. However, a low value of the velocity ratio does 
not cause instability with the boundary conditions that are 
developed in the present paper. For further discussion, see 
Test 2 in Section 5. 

An outline of the remainder of the paper is as follows. 
Absorbing boundary conditions for acoustic waves and for 
elastic waves are analyzed in Sections 2 and 3, respectively. 
Difference approximations to these boundary conditions 
are developed in Section 4. This section also describes 
how the difference approximations can be coordinated with 
free-surface and interface conditions for elastic waves. The 
results of some numerical computations are given in 
Section 5. 

2. ACOUSTIC WAVES 

Absorbing boundary conditions for acoustic waves were 
developed by the author in [S, 93. The goal of the present 
section is to show that when these boundary conditions 
are applied along a vertical computational boundary, the 
absorption properties depend only on the ratio of horizon- 
tal wavenumber to time frequency. In a horizontally 
stratified medium, these quantities do not vary from one 
layer to another. Effective absorption can therefore be 
obtained by using the same boundary operator in each 
layer. 

2.1. Formulas for Boundary Conditions in 
Homogeneous and Layered Media 

We first summarize some properties of the boundary con- 
ditions for the case of a homogeneous medium. Consider the 
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acoustic wave equation u,, = c2 V2u in either two or three 
space dimensions. Let x denote the horizontal coordinate 
perpendicular to the computational boundary; suppose that 
the computational domain corresponds to .Y > 0; and let 
2 be the vertical coordinate, with positive direction 
downward. In this notation, the boundary conditions at 
x = 0 have the form 

171 
L i ,F, ( cosq~-c- ” :)]“=o- (2.1) 

where la, ( < n/2 for all i. Boundary conditions of this type 
were also derived independently by Keys [ 141. In practice, 
one would use m = 2 or possibly m = 3. Difference 
approximations to (2.1) are discussed in Section 4. 

The form (2.1) provides a general representation of 
absorbing boundary conditions for the acoustic wave equa- 
tion, in a sense described in Proposition 9.1 of [S]. For 
example, the boundary conditions of Engquist and Majda 
[S, 61 are equivalent to (2.1) with aj=O for all j, and the 
boundary conditions of Trefethen and Halpern [21] are 
equivalent to (2.1) for various nonzero cr,‘s. 

A motivation for the form of (2.1) is the following. For 
definiteness, consider the case of two dimensions; a similar 
discussion applies to three-dimensional problems. The pur- 
pose of the boundary conditions is to simulate the outward 
radiation of energy from the interior of the computational 
domain. To do this, we seek boundary conditions that are 
satisfied by outgoing waves, at least in an approximate 
sense. An example of an outgoing wave is given by a plane 
wave of the form 

u(x, z, t) =,f((x, 2 - zo). (cos cc, sin tx) + cc) 

=.f(x cos a + (z - zo) sin c( + ct), (2.2) 

where z0 is any reference point along the z-axis, and f is an 
arbitrary function. The wave (2.2) travels out of the domain 
x > 0 with speed L’ at angle of incidence a relative to normal 
incidence. When the operator 

a a (cosct)--c- at ax 

is applied to (2.2), the result is zero. The boundary condi- 
tion (2.1) is therefore satisfied exactly by any linear com- 
bination of outgoing plane waves traveling with speed c at 
angles of incidence + CI, , . . . . _+ GI,. It is then possible to show 
that no reflected waves will be present in this case, since the 
boundary condition is entirely compatible with the outward 
radiation of energy. 

More generally, suppose that a sinusoidal plane wave 
approaches the boundary at an arbitrary angle of incidence 
13. In general, this wave will not satisfy the boundary condi- 

tion (2.1) exactly. The solution that is obtained must then 
include a reflected wave. so that the superposition 01 
incident and reflected waves does satisfy the boundary 
condition. The ratio of the amplitudes of the reflected and 
incident waves is given by the reflection coefficient 

R(H) = i’i cos x, - cos 0 
,=, cos2,+cos~ (2.41 

(see Section 2.2). Each factor in (2.4) is less than 1 if 
Ic)( < 7r/2, and the zeros of R are the angles of perfect absorp- 
tion. Numerical experiments have shown that good perfor- 
mance can be obtained by using second-order (m = 2) or 
possibly third-order (m = 3) versions of (2.1). 

The zeros &cc,, . . . . +a,,, of the reflection coefficient 
appear as explicit parameters in the boundary condition 
(2.1), and this creates the possibility of easily adapting the 
boundary condition to a priori information about the 
solution, if available. Numerical experiments have shown 
that the performance of the boundary condition is not 
very sensitive to the choice of rxj’s; Test 1 in Section 5 gives 
an example for the analogous case of elastic waves. In 
practice, it would suffice to make some rough estimates for 
these parameters and not worry about experimentation or 
line-tuning. An optimal choice of parameters would be 
problem-dependent. 

Now suppose that absorbing boundary conditions are 
imposed along a vertical computational boundary in a hori- 
zontally layered medium having different wave velocities in 
the various layers. The differing velocities would appear to 
complicate the process of choosing the parameters in the 
boundary condition (2.1). However, it will be shown here 
that the same boundary operator can be applied in all 
layers. 

For the sake of simplicity, the following discussion is con- 
cerned with a medium consisting of two layers, and the 
wave velocities in the upper and lower layers will be denoted 
by c and c’, respectively. The conclusions that are obtained 
can be applied to media having more than two layers, 

Suppose that the plane wave (2.2) moves downward 
through the upper layer. In general, a portion of the wave’s 
energy can be reflected upward from the interface, and a 
portion can be transmitted through the interface. Suppose 
that the transmitted wave is a propagating plane wave, and 
let ~1’ denote the angle of incidence relative to the vertical 
computational boundary (see Fig. 2.1). The direction of 
propagation in the lower layer is determined by Snell’s law 
of refraction, which states that the waves in the two layers 
must have the same “apparent velocity.” This quantity is the 
velocity of a point where a wavefront intersects a horizontal 
line (for example, the point P in Fig. 2.1); equivalently, it is 
the velocity seen by an observer who restricts attention to a 
horizontal line. The apparent velocities in the two layers are 
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computational 
boundary 

wavefront 

FIG. 2.1. Illustration of angles of incidence. The arrows represent 
directions of propagation. 

&OS c1 and c’/cos IX’, so &OS c1= c’/cos a’. Equivalently, if 4 
and 4’ denote angles of incidence relative to the horizontal 
interface (instead of the vertical computational boundary), 
then c/sin 4 = c’/sin 4’. The reciprocal of the apparent 
velocity is known as the “ray parameter” (see, e.g., Aki and 
Richards [ 1 I). 

The operator (2.3) is a constant multiple of 

a ca 
z- i-) cos a ii’ (2.5) 

so the operator (2.3) can be regarded as based on the ray 
parameter. This operator yields exact absorption of the 
wave (2.2), and it also gives exact absorption of the wave 
that is obtained when (2.2) is reflected from the interface, 
since the reflected wave approaches the computational 
boundary at angle of incidence --tl. In order to absorb the 
transmitted wave in the lower layer, one could use the 
operator a/at - (C’/COS c(‘) a/ax. By Snell’s law, this is identi- 
cal to (2.5), so one can use the same operator in both layers. 

If c’ > c, then Snell’s law yields cos a’ > 1 when cos CI is 
sufficiently close to 1. As will be discussed later, the trans- 
mitted wave in this case is not a propagating plane wave, 
but instead is an “evanescent” wave that decays with depth 
and propagates horizontally. In this case, it is not really 
appropriate to speak in terms of angles of incidence. For 
this reason, we adopt a more general notation for the 
absorbing boundary conditions in the two layers. 

In the upper layer, we consider boundary conditions of 
the form 

B(d/dx, ajdt)u=[ fi (flj$-Ct)l u=O, (2.6a) 
j=l 

where each pj is a positive dimensionless constant. If fij < 1, 
then /Ii can be regarded as the cosine of an angle of perfect 

absorption for waves having speed c. The boundary 
condition (2.6a) will also be applied in the lower layer; 
equivalently, one can think in terms of applying the 
boundary condition 

Bya,ax, ajaqf4=[p, (&$-df--1 u=O (26b) 

in the lower layer, where fl,//?j = c/c’. This would avoid the 
notational annoyance of using a wave speed c in the bound- 
ary condition for the lower layer which is different from the 
wave speed c’ that is actually present in that layer. However, 
this distinction is not an issue when (2.6a) and (2.6b) are 
implemented using finite differences. In Section 4 it is shown 
that the boundary condition (2.6a) can be approximated by 
a finite-difference equation that is determined by the dimen- 
sionless parameters fl,, . . . . p, and the Courant number 
v = c At/Ax, which is also dimensionless. In practice, one 
specifies the same values of these parameters in each layer. 
Further comments on this matter are given after Eq. (4.5). 

As a practical procedure, one could select the flJ-‘s by con- 
sidering angles of incidence in the upper layer. For reasons 
given earlier, the lower layer would then be handled 
properly automatically. An exception to this procedure can 
arise if the lower layer is faster than the upper layer and if 
a “head wave” is generated when a cylindrical or spherical 
wave moves downward into the lower layer. An analogous 
situation for elastic waves is shown in Test 3 in Section 5. As 
illustrated in that section, it is advisable to tune one of the 
factors in the boundary operator to give exact absorption of 
a normally incident wave in the lower (faster) layer. In the 
context of (2.6) this would mean pi= 1, or fi, = c/c’ < 1. 

2.2. Calculation of Reflection Coefficients 

We now calculate reflection coefficients at the computa- 
tional boundary for (2.6a) and (2.6b) in the two layers. For 
the sake of definiteness, we work with two-dimensional 
problems; the same analysis also applies to problems in 
three dimensions, except for the obvious differences in 
notation. 

The calculation is based on oscillatory plane waves of the 
form u(x, Z, t) = exp(ikx + ifz - iot). A wave of this type is 
a solution of uZt = c’(u,, + u;,) if and only if the dispersion 
relation o2 = c2(k2 + 12) is satisfied. The graph of this 
relation is a double cone in (k, 1, w) space. For waves of the 
present form, the group and phase velocities coincide and 
are equal to c(ck/w, cl/o). Therefore, for waves moving into 
(out of) the domain x > 0, k and w must have the same 
(opposite) signs. The unit vector (ck/o, cl/o) represents the 
direction of propagation. If 13 is the angle of incidence 
relative to the inward normal to the computational 
boundary, then cos 6= ckJw for incoming waves and 
cos 9 = - ckJo for outgoing waves. 
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In order to determine reflection properties of (2.6a) in the 
upper layer, consider a linear combination 

a, P 1X 1 v + it MUI + u2 e,k: x + i/r ,,,,I. 
(2.7 1 

Here, k, and k2 are chosen to correspond to incoming 
and outgoing waves, respectively, so k, = -k, The same 
dependences with respect to z and t are chosen in order that 
the linear combination can satisfy a boundary condition 
identically at x = 0. The coefficient a, of the outgoing wave 
is assumed to be known, and the problem is to determine 
the coefficient a, of the incoming wave. We want the ratio 
la, /a2 1 to be as small as possible. 

When (2.7) is inserted into the boundary condition 
(2.6a), the result is 

a,B(ik,, -iw)+u,B(ik,, -iw)=O. 

The amplitude reflection coefficient is R = la, /uZ 1, so 

R= 4ik2, -io) 
B(ik,, -io) 

‘n fil( -iw) - c(ik,) 
=;F, ;8i(-ia)-c(ik,) 

(2.8) 

A traditional way of representing reflection coefficients is to 
write them as functions of angle of incidence (e.g., [3, 5, 14, 
16, 181). In the present case, this can be done by observing 
ck, /w = cos 0 and ck,/o = - cos 8. The result is equivalent 
to (2.4) if fij = cos aj for all j. 

However, in discussions of layered media, it is not very 
desirable to represent reflection coefficients in this manner. 
If the transmitted wave is a propagating wave, then its angle 
of incidence is different from that of the wave in the upper 
layer. For the sake of clarity, it would be useful to express 
reflection coefficients in terms of a quantity that is the same 
in both layers. Also, for reasons given later, if c’ < c then 
there are angles of incidence in the lower layer that cannot 
actually be seen if the wave in the lower layer is generated 
by a wave moving downward through the upper layer. In 
this case, a formula for reflection coefficients in terms of 
angle of incidence would contain irrelevant information. On 
the other hand, if c’ > C, then there are transmitted waves 
that are evanescent and thus do not have a real angle of 
incidence, and a formula involving angles of incidence 
would be incomplete. We therefore develop an alternate 
method for representing reflection coefficients in the two 
layers. 

We begin with a summary of the wave forms that can be 
found in the lower layer. If a wave exp(ikx + ifz - iwt) 

The reflection coefficient (2.8) for the upper layer can be 
written as 

,?I 
R=n 

-fi,+.s 
-fi,-s I- 

12.9) 
i I 

where s = ck,/w = Ick2/oj. For a wave of the form 
exp(ikx + ilz - iwt), the quantity ckjw will be referred to as 
a scaled horizontal wavenumber, since the horizontal 
wavenumber k is scaled to be dimensionless. Similarly, the 
quantity cl/w can be regarded as a scaled vertical wave- 
number. The dispersion relation 02= c2(k2 + l*) for the 
wave equation implies (ck/w)” + (cI/w)’ = 1, so the set of all 
possible scaled wavenumbers for the upper layer is the unit 
circle shown in Fig. 2.2. In this diagram, a vector from the 
origin to (&lo, cl/o) gives the direction of propagation in 
(x, z) space. Waves moving at normal incidence to the 
computational boundary correspond to s = 1, and waves 
moving parallel to the boundary correspond to s = 0. 

HIGDON 

moves downward through the upper layer, then the U’;~VC 
that is generated in the lower layer must be a constant mui. 
tiple of a wave having the form exp(ik.u + ;‘z ~- i(l)t L I’hc 
same dependences with respect to .I and t are used in order 
that physical boundary conditions can be satisfied idcnrt- 
tally along the interface. which corresponds to a constant 
value of z (,see, e.g., Aki and Richards [ 1 I). The wave eyua- 
tion in the lower layer implies ( - ito )’ = (c’)’ (( ik)’ + ;.‘b. so 
;‘ can be either real or purely imaginary. If ;’ is real, we 
assume ;I < 0 in order to prevent the wave amplitude from 
being unbounded as z + + 1. (We have assumed that the 
positive :-direction is downward.) In this case, the wave 
propagates in .Y and decays with respect to ;, and the wave 
is evanescent. 

Our goal is to represent the reflection coefficients in the 
two layers in terms of k and tr), which are the same in both 
layers. We also develop a geometrical interpretation of 
reflection coefficients which helps to clarify the issue of 
which waves can actually be seen in the lower layer. 

The jth factor in the reflection coefficient (2.9) can be 
interpreted in terms of this diagram. Regard - fi, as a coor- 
dinate along the negative “ck/o” axis. The numerator in this 
factor is the distance from the line ckjw = -a, to the point 
on the circle having horizontal coordinate ck,/w; this point 
corresponds to an outgoing wave. The denominator is the 
distance from --fij to the point having horizontal coor- 
dinate ck,/o, which corresponds to an incoming wave. 
The ratio of the distances is less than 1, except when 
ck,/o =ckz/w= 0, which is the case of waves traveling 
parallel to the boundary x = 0. The ratio is zero at points 
where the line ck/w = - /3, intersects the circle, so the jth 
factor in the boundary operator in (2.6a) yields perfect 
absorption in that case. 

We now consider the lower layer. In order to facilitate 
comparisons with the upper layer, the wavenumbers will be 
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upper layer 

radius = c / c’ 

lower layer 
(if faster) 

radius = c / c’ 

i ckz /w ckl /w 

FIG. 2.2. Diagrams of the scaled wavenumbers that are involved in the reflection analysis for acoustic waves. The dimensionless quantity ck/w is a 
scaled horizontal wavenumber, and c//w is a scaled vertical wavenumber. The graph in the lower left (right) describes the situation in the lower layer 
if the wave velocity is smaller (larger) than in the upper layer. The velocities in the upper and lower layers are denoted by c and c’, respectively. Incoming 
and outgoing waves correspond to ckjw > 0 and ck/w < 0, respectively. Points on the line ck/w = -p, correspond to waves that are absorbed exactly by 
the jth factor in the boundary operator. 

scaled in the same manner as before. For purely oscillatory 
waves exp(ikx + il’z - iot) in the lower layer, the wave 
equation implies o2 = (c’)~ (k2 + (l’)*), so (ck/o)2 + 
(cZ’/w)’ = (c/c’)~. The set of all scaled horizontal and verti- 
cal wavenumbers for oscillatory waves must therefore lie on 
a circle of radius c/c’. If c’ < c (i.e., the lower layer is slower 
than the upper layer), then this circle has radius greater 
than 1; if c’ > c, the circle has radius less than 1. Each of 
these cases is illustrated in Fig. 2.2. 

The waves in the two layers must have the same scaled 
horizontal wavenumber, since k and o are the same in both 
layers. If c’ < c, the wave in the lower layer must always be 
purely oscillatory, since the circle in Fig. 2.2 for this case is 
larger than the circle for the upper layer. A comparison of 
directions of propagation for fixed ckjw shows that the 
direction of propagation in the lower layer is closer to verti- 
cal, so the wavefronts are closer to horizontal. The larger 
circle for the lower layer also implies that there are wave 
motions exp( ikx + if ‘z - iwt) that satisfy the wave equation 
in the lower layer but cannot be generated by an oscillatory 
wave moving downward through the upper layer; this case 

corresponds to Ick/wl > 1. For example, if c’ = c/2, then 
the circle for the lower layer has radius 2, and the non- 
observable waves have angles of incidence 0” through 60”. 

Next suppose c’ > c, i.e., the lower layer is faster than 
the upper layer. In this case, the circle in Fig. 2.2 for the 
lower layer is smaller than the circle for the upper layer, so 
all angles of incidence are possible in the lower layer. 
Furthermore, if 1 > Ick/oI > c/c’, then an oscillatory wave 
exp(ikx + ilz - iot) in the upper layer cannot generate an 
oscillatory wave in the lower layer, since the scaled horizon- 
tal wavenumber ck/o does not correspond to any point on 
the circle for the lower layer. Instead, the transmitted wave 
must be evanescent. 

In order to calculate a reflection coefficient in the lower 
layer, consider a linear combination 

a 
I 

eiklx + ;az ~ iwf + a2eikz.K + y: - iwf, (2.10) 

As before, k, and k2 are chosen to correspond to incoming 
and outgoing waves, respectively, and k, = -k 1. If c’ < C, 
then y is purely imaginary; if c’> c, then y is either 
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Upper I aysr Lower layer. if slower Lower layer, if faster 

Angle of lncrdence Angle of lncldence Angle of rncldence 
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Scaled horizontal ravenumber Scaled horizontal wavenumber Scaled horizontal wavenumber 

FIG. 2.3. Reflection coefficients for acoustic waves, when written as functions of s = Ick/ol. Here, k is the horizontal wavenumber of the outgoing 
wave, and o is the frequency. The quantity s is invariant under reflection and refraction at the interface. Solid curves show reflection coellicients for the 
second-order (m = 2) absorbing boundary condition, with pi = 1 and/J2 = cos 60”. Dashed curves correspond to the third-order (m = 3) boundary condi- 
tion, with p, = 1, /3? = cos 60”, and p3 = cos 30”. Left frame: upper layer. Middle frame: lower layer, when the wave velocity is one-half that of the upper 
layer. Right frame: lower layer, when the wave velocity is twice as large as in the upper layer. In a sense, the reflection coefficients are plotted as functions 
of the wave, and the coefficients are the same in both layers. 

imaginary or real and negative. When (2.10) is inserted into The goal of the present section is to analyze the performance 
the boundary condition (2.6b) for the lower layer, the result of these boundary conditions along a vertical computa- 
is tional boundary in a horizontally stratified medium. EIastic 

waves are more complicated than acoustic waves, and it is 

R= la,/azl = fi 
-/I,! - c’k,/w not correct to say that the absorption properties of the 

,=, -B;-c’k,/w boundary conditions are independent of the layer. However, 
these properties do not vary greatly from one layer to 

= fi / +z::j 
another, and the boundary conditions yield good absorp- 
tion in each layer, even in the presence of strong contrasts 

j=l between layers. 

=,fJ isi? (2.11) 3.1. Properties of Solutions of 
the Elastic Wave Equation 

where s = ck,/o = Ick,/ol. This is the same as the reflection For later reference, we summarize some properties of the 

coefficient (2.9) for the upper layer. As before, the reflection 
elastic wave equation. Let D be a domain in R” (n = 2 or 3) 

coefficient can be given a geometrical interpretation in 
that represents the position at equilibrium of an isotropic 

terms of ratios of distances. elastic medium. For any x E D and any time t, let U(x, t) E R” 

The reflection coefficients (2.9) and (2.11) are graphed in 
denote the displacement from equilibrium of the material 

Fig. 2.3. In each frame, the horizontal coordinate is the particle whose equilibrium position is x. If the magnitude of 

scaled horizontal wavenumber, which is the same in both U is small relative to the length scale on which U and the 

layers. In each case, this quantity is plotted on the bottom properties of the medium vary, then 

axis, and corresponding angles of incidence are plotted on 
the top axis. In a sense, the reflection coefficients in Fig. 2.3 
are plotted as functions of the wave, and the coefficients are ,~=~(~e)+j~l~,[~(~+~)~ (3.1) 

I J I 

the same in both layers. 

for 1 d i < n; here p(x) is the density of the medium, n(x) 
and p(x) are the Lam& parameters, and 8 = CT=, aiJ,/ax, 

3. ELASTIC WAVES (see, e.g., Aki and Richards Cl] or Bullen and Bolt [2]). 
In later discussions involving layered media, it will be 

Absorbing boundary conditions for elastic waves in necessary to refer to properties of solutions of (3.1) in 
homogeneous media are developed and analyzed in [lo], homogeneous regions. For definiteness, we consider the 
and a practical exposition of the main ideas is given in [ 111. case of two dimensions; analogous properties apply to 
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problems in three dimensions (see [lo]). In a two-dimen- 
sional uniform medium, (3.1) can be written in the form 

Here, the spatial variables are denoted by x and z, and the 
x- and z-displacements are denoted by u and w, respectively. 
The variable z will be regarded as a vertical coordinate, with 
positive direction downward. Subscripts in (3.2) denote 
partial differentiations. 

Consider waves of the form 

e rk.? + i/z - iwr 
4, (3.3) 

where q is a vector having two real components, and k, 1, 
and w are real scalars. If (3.3) is a solution of (3.2), then the 
dual variables in (3.3) must satisfy the dispersion relation 

or 

where 

oj2 = cZ,(k2 + 12) 

co2 = c;(k2 + 12), 

(3.4a) 

(3.4b) 

CP = ((A + 2PL)lPP2, c.s = wP)“2. (3.5) 

In the first case, one can choose 

q=W)=; (3.6a) 

in the second case, 

q= (-1, k)? (3.6b) 

The vectors in (3.6) can be scaled to unit length by multi- 
plying by cp/o and es/w, respectively. In each case, the 
group and phase velocities coincide and are equal to 
c(ck/c/o, ~l/o)~, where c = cp or c = cs. Waves travelling into 
(out of) the domain x > 0 correspond to k and o of same 
(opposite) signs. 

If a wave satisfies (3.4a) and (3.6a), then the displacement 
is parallel to the velocity vector, and the wave motion con- 
sists of compressions and expansions. For waves satisfying 
(3.4b) and (3.6b), the displacement is perpendicular to the 
direction of wave propagation, and the wave consists of 
shearing (rotational) motions. 

For most hard rock in the earth, 1 and ,n are 
approximately equal (see Bullen and Bolt [Z, p. 891). If 
iv = p, then (3.5) implies cs/cp = l/a G 0.577. Smaller 
values of this ratio are found in materials of lower rigidity. 

The preceding discussion has been concerned with body 
waves, which propagate through the interior of an elastic 
medium. Now suppose that an elastic medium is bounded 
above by a horizontal free surface. Along such a surface, 
Rayleigh waves can propagate. These waves can be 
regarded as particular linear combinations of P- and 
S-waves that are evanescent in the sense of decaying with 
depth and propagating horizontally (see, e.g., Aki and 
Richards [ 11). The speed cR of Rayleigh waves is slightly 
less than that of propagating S-waves. For example, if 
cs/cp = l/J?, then cR G 0.92c,. 

3.2. Boundary Conditions 

The boundary conditions for elastic waves developed in 
[lo] are generalizations of the boundary conditions for 
acoustic waves discussed earlier. For the moment, consider 
the case of a homogeneous medium and suppose that the 
computational domain corresponds to x > 0. For problems 
in either two or three dimensions, the boundary conditions 
in [lo] are obtained by applying the operator 

to each component of the displacement vector at the bound- 
ary x = 0. Here, flj is a positive dimensionless constant, for 
each j. In practice, one would use m = 2 or possibly m = 3. 
In principle, the P-wave speed cp could be replaced by a dif- 
ferent wave speed in some of the factors in (3.7); the use of 
cp in each factor amounts to a normalization of coefficients 
and is done solely for notational convenience. 

A motivation for (3.7) is the following: Suppose that a 
combination of P-waves and S-waves is moving toward the 
computational boundary. In general, each component of 
displacement can experience each kind of wave, and each 
wave speed must be taken into account during the deriva- 
tion and analysis of boundary conditions. If 0 < flj G 1, then 
the jth factor in the operator (3.7) yields perfect absorption 
of P-waves travelling at angles of incidence k cos ~ ’ /?,. The 
jth factor might then be regarded as oriented primarily to 
absorbing P-waves. However, a key idea behind the reflec- 
tion analysis given later is that this operator still contributes 
substantially to the absorption of S-waves. A rough descrip- 
tion of this idea is that thejth operator can also be regarded 
as an “S-wave” operator if it is multiplied by cs/cp. This 
operator thus produces exact absorption of S-waves at 
angles of incidence + cos - ‘(pi ( cs/cp)). Such angles might 
not be optimal for absorbing S-waves, but the jth factor 
definitely helps to absorb such waves. On the other hand, if 
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/Ij is near c,/c,, then thejth factor is oriented primarily to 
the absorption of S-waves, but it still contributes to the 
absorption of P-waves. 

In general, the parameters 8, can be chosen to orient the 
boundary condition to one type of wave or to reach a com- 
promise between the two. In some of the numerical com- 
putations described in Section 5, the second-order (m = 2) 
version of (3.7) was used, with 8, = 1 and /I2 = c~I.c~. In this 
case, (3.7) yields exact absorption of P-waves and S-waves 
at normal incidence to the boundary. The third-order 
(m= 3) version of (3.7) was also used, with /J, = 1, 
f12 between 1 and c,/c,, and fi-i=c,/c’,. Numerical 
experiments have shown that the performance of (3.7) is not 
very sensitive to the choices of these parameters. For an 
example, see Test 1 in Section 5. 

Now consider the case of a layered medium. For 
simplicity, suppose that the medium consists of two 
homogeneous layers separated by a horizontal interface and 
suppose that the computational boundary is perpendicular 
to the interface. Let cp and c.s denote the P-wave and 
S-wave speeds in the upper layer, and let c’p and c’s denote 
the speeds in the lower layer. In the lower layer, the operator 
(3.7) can be applied to each component of displacement at 
the boundary; equivalently, the operator 

B’($;)=,i:i, (,;$-c,:) (3.8) 

can be applied to each component, where flj/cp = /I,/c> for 
eachj. The values of /Ii, . . . . pm could be chosen according to 
the guidelines mentioned above or according to particular 
information about wave motions in one of the layers. For 
example, if the lower layer is faster than the upper layer, and 
if a downgoing cylindrical or spherical P-wave generates 
head waves along the interface, then one of the factors in 
(3.7) and (3.8) could be tuned to a normally incident 
P-wave in the lower layer. This would mean /II = 1 and 
/Ii = cp/c>. For an example, see Test 3 in Section 5. 

3.3. Analysis of Absorption at 
the Computational Boundary 

In this sub-section we calculate reflection coefficients for 
(3.7) and (3.8) at the computational boundary. For the sake 
of definiteness, we write the analysis in terms of two-dimen- 
sional problems. The calculation for three-dimensional 
problems is similar to the two-dimensional case. 

Suppose that a plane elastic wave (P or S) moves 
downward through the upper layer and out of the computa- 
tional domain. When this wave encounters the interface, it 
can generate reflected P- and S-waves and transmitted 
P- and S-waves (see Fig. 3.1). The resulting wave system is 
therefore rather complicated. We wish to analyze the inter- 

FIG. 3.1. Reflection and transmission of elastic waves at an interface. 
For each wave, the solid line represents a wave front, and the arrow 
represents the direction of propagation. In the case illustrated here, the 
wave velocities in the lower layer are smaller than those in the upper layer. 

action with the computational boundary of each of the 
waves in this system. When these waves encounter the com- 
putational boundary, each can generate a reflected P-wave 
and a reflected S-wave. In the following analysis, we there- 
fore analyze the following boundary interactions in each 
layer: outgoing P-wave and incoming P-wave, outgoing 
P-wave and incoming S-wave, outgoing S-wave and incom- 
ing P-wave, and outgoing S-wave and incoming S-wave. In 
each case, the reflection coefficient can be regarded as the 
amplitude of the reflected wave due to an incident wave of 
unit amplitude. No attempt will be made here to calculate 
the relative amplitudes of the various waves in the system 
that approaches the boundary. This would be a matter of 
calculating reflection and transmission coefficients across 
the interface, and this is done, for example, by Aki and 
Richards [ 11. 

For the sake of unity in presentation, we write the various 
reflection coefficients as functions of a quantity that is 
common to all of the outgoing waves considered here. 
It is apparent from Fig. 3.1 that angle of incidence is not 
an appropriate independent variable. Instead, as in the 
acoustic case, we use a scaled horizontal wavenumber. If the 
original incident wave in the upper layer has the form 
q exp(ikx + if; - jot), then all of the other waves have the 
same horizontal wavenumber k and time frequency w (see, 
e.g., [ 11). For a scaled horizontal wavenumber, we use 
c,k/w. In this definition, the choice of cp instead of c’s is 
rather arbitrary; it is done mainly for the sake of notational 
compatibility with the boundary formula (3.7), which 
uses cp. 

The dispersion relation (3.4) implies that for waves in the 
upper layer, 

(!2);+(5$ 

for P-waves, and 

(3.9aj 

(3.9b) 
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for S-waves. The scaled horizontal and vertical wave- 
numbers for oscillatory P- and S-waves therefore lie on 
circles of radius 1 and cp/cs > 1, respectively. For waves in 
the lower layer, the dispersion relation is obtained from 
(3.4) by replacing cp and cs with c’p and c[,, respectively. 
The result can then be written in the form 

(3.10a) 

for P-waves, and 

(!$&)‘+(5$(~) (3.10b) 

for S-waves. The relations (3.9) and (3.10) are graphed in 
Fig. 3.2. For each kind of wave, the vector from the origin 
to (c&/w, cpl/o) gives the direction of propagation in 
(x, z) space. Waves moving into (out of) the domain x > 0 
correspond to c,k/w > 0 (c,k/w < 0). 

In the following analysis, the reflection coefficients are 
written in terms of the quantity s= Ic,k/wl, where k is 
the horizontal wavenumber of the outgoing wave under 
consideration. For P-waves in the upper layer, we have 
13 s > 0. P-waves moving at normal incidence to the 
boundary x = 0 correspond to s = 1. For S-waves, we have 

cp/cs > s > 0. In the lower layer, cp/cs > s > 0 for each type 
of wave. It is assumed here that the waves in the lower layer 
are generated by waves moving downward through the 
upper layer, so the range of possible values of s in the lower 
layer must coincide with the largest possible range of s in the 
upper layer. This statement includes the idea that a down- 
going S-wave in the upper layer can generate either type 
of wave in the lower layer. Because of the above condition 
on s, there may be angles of incidence that cannot actually 
be seen in the lower layer, or there may be transmitted 
waves that are not purely oscillatory. 

For example, suppose that in Fig. 3.2, the circle for 
P-waves in the lower layer is larger than the circle for 
S-waves in the upper layer. In this case, there is a range of 
directions for P-waves in the lower layer that cannot 
actually be seen, and there is also a much larger range of 
directions for S-waves that cannot be seen. This case occurs 
if and only if cp/c’p > c,/c,, or c’s < c’p < cs < cp. In other 
words, all waves in the lower layer are slower than all waves 
in the upper layer. On the other hand, if c’p > cs, then there 
is a range of scaled horizontal wavenumbers for S-waves 
in the upper layer that cannot correspond to oscillatory 
P-waves in the lower layer. In this case the transmitted 
P-wave is evanescent, in the sense of propagating horizon- 
tally and decaying with depth. Similarly, transmitted 
evanescent S-waves can also occur, depending on the rela- 

radius = 1 

lower layer 

I lower layer 
(if faster) 

FIG. 3.2. Graphs of scaled wavenumbers for elastic body waves. In each graph, the smaller circle represents the set of all possible scaled wavenumbers 
for P-waves, and the larger circle represents the possible scaled wavenumbers for S-waves. The velocities in the upper and lower layers are denoted by 
cP, cs and cb, c$. respectively. 
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tionships between the velocities in the upper and lower 
layers. 

For reasons given later, the following analysis does not 
cover the case of transmitted evanescent waves. For the 
lower layer, the analysis therefore gives a complete descrip- 
tion of wave interactions at the computational boundary if 
c; 6 cs, and it gives a partial description otherwise. The 
description of wave interactions in the upper layer is 
complete, under any circumstances. The empirical results in 
Section 5 include computations for which c’p = 2c,, so c’p is 
substantially greater than cs in those computations. The 
boundary conditions are found to be effective in that case. 

In the following analysis, we first calculate reflection 
coefficients for the upper layer and then translate the results 
into reflection coefficients for the lower layer. 

3.3.1. Upper Layer 

First consider the reflections generated by an outgoing 
P-wave in the upper layer. To do this, we assume that a 
linear combination of the form 

arPe 
ik,r.r + rt ~ ior 

qlp + aIs 
ik,s.x + i/z - iwrq,s 

+ aOPe 
rk0p.r + r/z ~ hul 

qop (3.11) 

satisfies the boundary condition defined by (3.7) at x = 0. 
The first term in (3.11) represents an incoming (reflected) 
P-wave, the second represents an incoming S-wave, and 
the third represents an outgoing (incident) P-wave (see 
Fig. 3.3). The coefficient sop is assumed to be known, and 

I radius = 1 

radius = c,/c, 

c,klw 

FIG. 3.3. Illustration of the scaled wavenumbers that are involved in 
the reflection analysis for an outgoing P-wave in the upper layer. Points on 
the line c,k/o = -8, correspond to outgoing waves that are absorbed 
exactly by thejth factor in the boundary operator. 

the goal is to calculate alp and u,.~. For a good absorbing 
boundary condition, Ja,p,JaoPi and JuI,\.;ar)P1 should be as 
small as possible. 

The vectors q,,, qls, and yap are assumed to be nor- 
malized to unit length. Thus, from (3.6 ), 

(3.12) 

Now apply the boundary operator (3.7) to the linear 
combination (3.1 l), set the result equal to zero at x = 0, and 
cancel the factors exp( i/z - iwt ). The result is 

aIPB(iklP, - iw) qlp + a,.Aik,, -iu) qIs 

+ a,,,B(ik,,, - io) qop = 0 

or 

CB(iklP, - io) qlp, B(ik,,, -im) qIsl 

= -aopB(ikop, -io) qop. (3.13) 

In (3.13), the bracketed quantity is the square matrix whose 
columns are the vectors that are shown. Equation (3.13) will 
be regarded as a linear system with unknowns alp and a,,. 

We first calculate alp. Cramer’s rule yields 

detC -aopB(ikop, - im) qop, B(ik,, - io) q,sl 
a IP = det[B(ik,,, -ia) qIp, B(ik,,, -iw) qIsl 

In this calculation, we have taken advantage of the fact that 
the same operator is applied to all components of the dis- 
placement vector when the boundary condition is imposed; 
this leads to scalar multiples of the vectors qlp, q,s, and qop, 
and these can be factored out in a convenient manner. If dif- 
ferent operators were applied to the displacement vector at 
the boundary, then the above calculation would be more 
complicated. 

The reflection coefficient R,, is defined by 

Ialp =Rpp laopI =RFpRFp laopI, 

where 

(3.14a) 

R;, = B(ikop, -ia) 
B(iklP, -iw) 

(3.14b) 
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and 

(3.14c) 

The factor Rfp represents the effect of the boundary 
operator B(a/ax, a/at), in a sense, and RF,, is the P-wave-to- 
P-wave reflection coefficient for the homogeneous Dirichlet 
boundary condition u = w = 0. (To see the latter statement, 
pretend that B is the identity operator.) 

The form (3.7) of the boundary operator implies 

=fi 

j= 1 

=fi 

/=l 

-P, - (ckd~) 

-Bj- (Cpklpla) 

(3.15) 

where s= Icpk,,/ol = c,k,,/w. As in the acoustic case, 
each factor in (3.15) can be interpreted as a ratio of distan- 
ces. The numerator in the jth factor is the distance from 
the line cpk/o = - j, to the point on the smaller circle 
in Fig. 3.3 having horizontal coordinate c,k,,/w; the 
denominator is the distance from - flj to cpk,,/co. The ratio 
is always less than 1, and it is zero if -pi = c,k,,/o. 

A calculation involving (3.14c), (3.12), (3.9), and the 
definition of s yields 

where 

A = ( (cp/cs)2 - 1 + .s2)? (3.17) 

The reflection coefficient R,, is then given by 

where 1 > s z 0. 
We now calculate the coefficient a, of the incoming 

S-wave in the linear combination (3.11). When Cramer’s 
rule is applied to the linear system (3.13), the result is 

B(ikOp, - io) 
a - 

Is- B(ik,,, -iw) 

in a manner analogous to (3.14bk(3.14c). The first of 
these is 

Rfp= B(ikop, -io) 
B(ik,,, - iw) 

-&- (c,k,,l~) 
=jCl I -B/v (Cpk,.yIm) 

(3.19) 

where A is defined in (3.17). The definition of s and the rela- 
tions in (3.9) are used to obtain the last equation in (3.19). 
As before, R& can be interpreted in terms of ratios of dis- 
tances in Fig. 3.3, and each factor in (3.19) is always less 
than 1. The reflection coefficient for the Dirichlet boundary 
condition is 

RD = detCqlp, qopl 
SP detCqIpy sIsl 

2s( 1 - s2p2 
=(c,/c,)[l -s2+sA]’ 

The reflection coefficient R,, is then given by 

for 12~30. 
We next examine the reflections produced by an outgoing 

S-wave a,,q,, exp(ik,,x + ilz - iwt) in the upper layer. In 
this case, reflection coefficients are expressed in terms of the 
quantity s = Ic,kos/ol, and cp/cs Z s 2 0. 

The analysis is divided into two cases. If IcJ/wl G 1, then 
the outgoing S-wave generates a reflected oscillatory 
P-wave and a reflected oscillatory S-wave. This situation is 
illustrated in Fig. 3.4. The horizontal line corresponds to the 
fixed value of cJ/w that is found in the outgoing and incom- 
ing waves considered here. The line intersects both circles in 
the graph. On the other hand, suppose 1< (c,Z/ol < cp/cs. 
In this case, a horizontal line for fixed L-J/O intersects the 
outer circle, which corresponds to oscillatory S-waves, but 
it does not intersect the inner circle, which corresponds to 
oscillatory P-waves. An outgoing oscillatory S-wave is thus 
possible, and it can generate an oscillatory incoming 
S-wave. However, an oscillatory incoming P-wave is not 
possible, and instead there can be a reflected evanescent 
P-wave having the form 

ppx + i/z - iWrqlp~ 

We then define a reflection coefficient R,, by (a,[ = Here, lclp is real, and lcIp < 0 if the spatial domain is x > 0. 
R,, laoPI = R&R&, laopI, where R&and Rf,, are defined This mode propagates in the vertical direction and decays in 
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radius = I 
ficient R,, by /ullpl = R,,,5 iuosI. If the P-wave IS purely 

oscillatory, then 

where 

R& = 

E= 

Wq OS, 41.~1 WC&-,) F’ ’ 
detCqlp, q,.yl = sE+F ’ 

(3.21 b) 

1 - (cp/c.y)’ +s~)“~. F= (c,/c,~)* -.T’, (3.21~) 

--l ano cp/cs 2 s 3 ((c~/c~)’ - 1 )‘I*. If the incoming P-wave is 
evanescent, then 

FIG. 3.4. Illustration of the scaled wavenumbers that are involved in 
the reflection analysis for an outgoing S-wave in the upper layer. In the 
case shown here, Ic&q < 1, and the reflected P-wave is oscillatory. If 
jcp~/wl > I, then the reflected P-wave is evanescent. 

-Pi- (CPKIP/U)(~/~) I) 

RD 
PS 

(3.22a) 

the inward horizontal direction. The dual variables satisfy 
(-iu)‘= C;(K;, + (il)2); th is is an analogue of (3.4a). The 
vector qlp is any scalar multiple of (K, iE)T. 

Incoming oscillatory P-waves are found if and only if 
cp/cs3s2((c,/c,)2- 1) ‘I*. This condition is obtained by 
inserting the extreme values cpl/o = 0 and IcJ/ol = 1 into 
the relation (3.9b) for scaled wavenumbers for S-waves. 
Equivalently, one can use Fig. 3.4; s represents the absolute 
values of horizontal coordinates of points on the larger 
circle, the vertical coordinate varies from 0 to + 1, and 
the radius is cp/cs. Evanescent P-waves are found for 
((CPkS)’ - 1 P2 2 s > 0. If cp/cs = fi, then an evanescent 
P-wave is encountered if and only if the outgoing S-wave 
travels at an angle of incidence greater than COS-‘(~/~)‘/~ 
s 35.26”. 

In order to analyze the reflections produced by the 
outgoing S-wave, we suppose that a linear combination 

where 

(3.22b) 

F is defined in (3.21c), and ((c~/c~)* - 1)“2~s30. The 
mode qlp exp(rc,x + ilz - id) decays as x increases, so the 
effects of this mode are confined to a neighborhood of 
the boundary. For evanescent P-waves, the size of R,, is 
less significant than it is when the incoming P-wave is 
oscillatory (propagating). 

For the incoming S-wave, a reflection coefficient R,, is 

defined by la,, ( = R,, la,, 1. A calculation shows that 

R,s= f, -P,- (c,koslo) 

i I j= 1 -bj- (CpklSIW) 

arPe KJ~X + I/Z - iorqlp + a,seik,.yx + I/Z ~ rwrqlS (3.23a) 

+ aOSe ikosr + i/z ~ i<urqos 

where R& = IdetCq,,, qoslldetCq,p, qIsll. If cpIcs 2 
satisfies the boundary condition at x = 0. If c,/c,> s > s >, ((c~/c~)~ - 1)‘j2, then 
((cPIcs)2 - 1 p2, then iclp= ik,, where k, is real. 
Otherwise, lcIp is real and negative. The vectors qlp, qls, and F-SE 
qos are assumed to be normalized to unit length. The 

R&= - 
I I F-!-SE ’ 

(3.23b) 

calculations for this case are analogues of those used in the 
analysis of an outgoing P-wave, so we only state the final and if ((cp/cs)’ - 1)‘j2 2 s 2 0, then R& = 1. 
conclusions. The reflection coefficients Rpp, RSP, R,, and R,, given 

For the incoming P-wave, we define a reflection coef- in (3.18), (3.20), (3.21), (3.22), and (3.23) are plotted in 
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Fig. 3.5. In these graphs, it is assumed that cP/cS = $4. 
Graphs are given form = 2 and m = 3, with /I1 = 1, /I2 = fi, 
and p3 = 1.3. Different choices of parameters would yield 
different plots. The formulas for the reflection coefficients 
show that these coefficients are zero if s = /I, for somej. The 
parameters pl, flZ, and /j3 can therefore be regarded as 
values of s for which the boundary conditions yield exact 
absorption. 

3.3.2. Lower Layer 

We now translate the preceding results into reflection 
coefficients for the lower layer. As mentioned earlier, it is 
assumed that the waves in the lower layer are generated by 
a wave moving downward through the upper layer. All of 
the waves in this system have the same horizontal 
wavenumber k and time frequency w, and all reflection coef- 
ficients are written in terms of the common quantity 
s= jc,k/oj. In the lower layer we have c,/c,>s 30, since 
this is the maximum range of s for waves in the upper layer. 
In the following discussion, it is assumed that the waves that 
are transmitted into the lower layer are purely oscillatory 
(propagating). A few remarks on transmitted evanescent 
waves are given later. 

The conclusions of the analysis can be summarized as 
follows. As before, each reflection coefficient is written as a 

Angle of incidence for P-wave 

0 30 60 90 !a 

product of two factors; one of the factors involves the 
boundary operator B, and the other is a reflection coef- 
ficient for the homogeneous Dirichlet boundary condition. 
When expressed as a function of s, the first factor is either 
the same in both layers or nearly the same. On the other 
hand, the reflection coefficient for the Dirichlet condition 
is not the same in the two layers, when written in terms 
of S. Overall, the reflection coefficients for the absorbing 
boundary conditions are not the same in the two layers. 
However, they are sufficiently close to each other that it is 
possible to obtain good absorption in both layers, even in 
the presence of strong contrasts between layers. 

The boundary conditions are obtained by applying the 
operator (3.7) to each component of displacement in each 
layer. For the lower layer, we can also think in terms of 
applying the equivalent operator (3.8) 

where bi/cP = fi.j/c’p for all j. The reflection coefficients for 
the upper layer were concerned with outgoing oscillatory 
waves. Reflection coefficients for outgoing oscillatory waves 
in the lower layer can therefore be obtaind from the earlier 
results by replacing cP, cS, pi, and s = jc,k/w( by cl,, c[,, PI, 
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FIG. 3.5. Plots of reflection coeffkients at the computational boundary in the upper layer. In each case, the coefftcient is plotted as a function of the 
quantity s = Ic,k/ol, where k is the horizontal wavenumber of the outgoing wave under consideration. This quantity is invariant under reflection, refrac- 
tion, and conversion at the interface between the upper and lower layers. The plots show reflection coefficients for second-order (m = 2) and third-order 
(m = 3) boundary conditions, with /?t = 1, j?z = cp/cs = fi, and /?s = 1.3. The solid curves correspond to m = 2, and the dashed curves correspond to 
m = 3. Exact absorption occurs ifs = B,, Bz, or b3. R,,: amplitude of the reflected P-wave due to an incident P-wave of unit amplitude. RSP: reflected 
S-wave, incident P-wave. R,,: reflected P-wave, incident S-wave. R,,: reflected S-wave, incident S-wave. 
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and s’ = I&k/o/, respectively. These formulas can be writ- 
ten in terms of s by using the relation s’ = (cL/cp)s, and it is 
then possible to plot the reflection coefficients and compare 
them with the reflection coefficients for the upper layer. 

Before examining plots, we first analyze some aspects of 
the reflection coefficients for the lower layer. In order to 
determine the reflections produced by an outgoing P-wave, 
we assume that a linear combination 

abe i& + I(“ - imq;p + a;Seik;s., + cl’; ,w,q;~s 

ik’ +abpe op u+ 1/‘1~ mJlq;p (3.24) 

satisfies the boundary condition at x = 0. The frequency o is 
the same as in the original incident wave (P or S) in the 
upper layer that generates the wave system that approaches 
the computational boundary; and kbP = k, where k is the 
horizontal wavenumber of that incident wave. 

For the reflected P-wave, we have la;,1 = RLp labPI = 
R’fp RFp jabP 1, where 

and R’,“, is obtained from Rffp in (3.16) by replacing cp, cLY, 
and s by CL, c$, and s’. The relation p,/cp = /Ii/cl, implies 

R$.= fi -Pj- (Cpkbplw) 
i= 1 4, - (c&h) 

(3.25) 

since s = jc,kbp/wl = Ic,k/ol and c,k~,/w = -c,k;,/o. 
The formula (3.25) for R& is identical to the expression 
(3.15) for Rs, in the upper layer. For any given wave 
system, the same values of s are inserted into these two for- 
mulas, due to the preservation of frequency and horizontal 
wavenumber across the interface. 

In a sense, the operator B gives the same contribution to 
the reflection coefficient in both layers. However, if RFp is 
written in terms of s by using the relation s’ = (c>/cp)s, the 
result is different from the reflection coefficient RFp for the 
upper layer given in (3.16). 

For the incoming S-wave in (3.24), we have lais I = 
R& la&l = R’&R$ la&I, where 

The definition of s and the relation (3.10) for {caled 
wavenumbers in the lower layer yield 

This is not quite the same as the formula for (3.19) for R& 
in the upper layer, but it reduces to (3.19) if c> = cp and 
c:,= cy. As in the case described earlier, the reflection 
coefficients for the Dirichlet boundary condition are not the 
same in the two layers. 

To summarize, we have shown R&= R’PB, and 
R& # R’$. The distinction between these two cases can be 
visualized by re-examining Fig. 3.3, which illustrates the 
scaled horizontal wavenumbers that are involved in the 
reflection analysis for an outgoing P-wave in the upper 
layer. The analogous picture for the lower layer is the same, 
except that the circles have different radii. R& has been 
interpreted in terms of ratios of distances from -/I, to 
c&w /w and cpk,,/ox Similarly, RFp can be interpreted in 
terms of distances from - j?, to c,kb,/w and c,k;,/w. But 
kbp = kc,,, due to the preservation of horizontal wave- 
number across the interface; and kip = - kLp = -k,, = k,,,. 
due to symmetries about k = 0. Therefore, R$TIp = RFp. On 
the other hand, corresponding symmetries are not found in 
the relationships among k,,,, k,,, k’,,, and k’,,, and 
R& # R:&. 

Next consider the reflections produced by an outgoing 
S-wave in the lower layer. In this case, reflection coefficients 
are written as functions of s= Ic,k’,,/ol. An analysis 
similar to the above shows Rx # Rzy. On the other hand, 

RF’= fi -Bj- (c,kbslw) 
/=I - 13, - (c,k;&) 

A comparison with (3.23a) yields R& = Rf”. As before, the 
reflection coefficients for the Dirichlet condition are not the 
same in the two layers. 

The reflection coefficients Rkp, R)SP, R&, and R& are 
graphed in Fig. 3.6. In these plots, it is assumed that 
c’p = cp/2 and c’p/c; = fi. In the plots for the upper layer 
shown in Fig. 3.5, it was assumed that cp/cs = $; in that 
case we then have c$ = c,/2. If the scaled wavenumbers for 
the two layers are graphed as in Fig. 3.2, then the circles for 
the upper layer have radii 1 and a, and the circles for the 
lower layer have radii 2 and 2 &. All of the transmitted 
waves in the lower layer must then be purely oscillatory; no 
evanescent transmitted waves are possible. All of the reflec- 
tion coefficients are graphed for c,/c,= fi>s~O, for 
reasons given earlier. 
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FIG. 3.6. Plots of reflection coefficients for the lower layer. It is assumed that the P-wave and S-wave velocities in the lower layer are equal to one-half 
the corresponding values for the upper layer. The same values of /I’], P2, and p, are used as in Fig. 3.5. The solid curves correspond to second-order 
boundary conditions, and the dashed curves correspond to third-order boundary conditions. 

The plots show graphs of reflection coefficients for 
second-order (m = 2) and third-order (m = 3) boundary 
conditions, with fll = 1, b2 = a, and fi3 = 1.3. Equiva- 
lently, pi = l/2, /I; = &/2, and & =0.65, since /I,! = 
(c’p/cp) /I, = flj/2 for all j. These are the same choices of 
parameters as shown in Fig. 3.5 for the upper layer. The 
graphs shown in Fig. 3.5 and 3.6 are not the same, but the 
graphs show that good absorption is obtained in each layer. 

We conclude with some remarks about transmitted 
evanescent waves. Conditions for the existence of such 
waves are discussed before the beginning of Section 3.3.1. 
Suppose that such a wave (P or S) approaches the computa- 
tional boundary and denote it by q exp(&x + yz - iwt), 
where y < 0. In order to determine the reflection produced 
by this wave at x = 0, one might assume that a linear com- 
bination 

aIpe ik,px + yz - iotqIp + a,Seik,sx + yz ~ korqls 

+e ikr + ys - iwr 
4 (3.26) 

satisfies the boundary condition at x = 0 in the lower layer. 
The same dependence with respect to z and t is used so that 
the boundary condition can be satisfied identically at x = 0. 
Reflection coefficients can be calculated in the same manner 
as before, and the formulas are analogues of ones obtained 
earlier. 

However, there are possible problems with the 
magnitudes of the reflection coefficients for the Dirichlet 

boundary condition that are obtained by this process. For 
example, suppose that the velocities of P- and S-waves in 
the lower layer are twice as large as those in the upper layer, 
and suppose cp/cs = c’p/cb = &. Reflection coefficients for 
the lower layer are of interest for & > s 2 0. A horizontally 
propagating P-wave in the upper layer corresponds to s = 1, 
and in this case the analysis yields a value of R’&, that is 
approximately equal to 4. The extreme value s = fi 
corresponds to a horizontally propagating S-wave in the 
upper layer, and in this case the computed R’f;‘, is 
approximately equal to 12. Similar behavior is found in 
RFp. It is not clear whether reflection coefficients of this 
magnitude are physically reasonable, when the homo- 
geneous Dirichlet boundary condition is used. Because of 
such doubts, details of the above analysis for transmitted 
evanescent waves are not given here. A possible source of 
the difficulty is that the linear combination (3.26) might not 
include a correct formulation of the possible reflected waves. 

However, in Test 3 in Section 5, absorbing boundary 
conditions are tested numerically for the case where the 
velocities in the lower layer are twice as large as those in the 
upper layer, and the boundary conditions are found to give 
effective absorption. In these computations, transmitted 
evanescent waves are not readily apparent (see Fig. 5.6). 
This experiment suggests that such waves might not be of 
significant amplitude, so that propagating waves are of 
primary concern in the lower layer. The present section 
gives a complete analysis of that case. 
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4. NUMERICAL ALGORITHMS 

In this section we describe difference approximations to 
the boundary conditions developed in Sections 2 and 3, and 
we also describe how to implement these boundary condi- 
tions in conjunction with free-surface and interface condi- 
tions for elastic waves. The numerical algorithms are stated 
mainly in terms of two-dimensional problems, and in this 
case the space domain is assumed to be a rectangle defined 
by A d-x < B, 0 d z < H, with positive :-direction 
downward. The difference approximations to absorbing 
boundary conditions also apply to three-dimensional 
problems with essentially no modification, and this is also 
discussed. 

4.1. Difference Approximations to 
Absorbing Boundary Conditions 

First consider boundary conditions at x= A. For both 
acoustic and elastic waves, the analytical absorbing 
boundary conditions fit into the general form 

B(a/ax,a/a+ 

where the /Ii’s are positive dimensionless constants. In the 
acoustic case, c is the wave speed, and u is the dependent 
variable. In the elastic case, c is replaced by cP, and the 
operator B is applied to each component of displacement. 

For the sake of deriving difference approximations, let 
Ax, AZ, and At denote the stepsizes in x, Z, and t, respec- 
tively; and let uFM denote an approximation to a quantity 
of the form u(A + J Ax, M AZ, N At). Also define shift 
operators E, and E, by 

Then E; ‘u$‘~ = uJ”- ,,M and E, ‘u&,, = ~7;‘. Assume that 
the solution has been computed for t < N 2 t, and the solu- 
tion is then needed at time tN+ , = (N + 1) At. For the sake 
of definiteness, also assume that the interior scheme yields 
the solution at time t,, i at the grid points for which 
x > A + Ax, so that the boundary conditions are needed for 
computing the solution only at the grid points for which 
x = A. This is the case, for example, with standard centered 
second-order finite difference approximations to the 
acoustic and elastic wave equations. 

An operator /M/at - calax can be approximated by 

[(I- b)z+ &I 

[(I-b)Z+bE,‘], (4.2) 

where I is the identity operator and h IS a constant. In the 
first term in (4.2). the factor (16 E, ‘)i’il/ represents it 
backward time difference. and the factor [( 1 -.- /))I i hi;, ! 
represents a weighted average in .Y with weighting ~ocf 
licients 1 -h and h. The time differences will be taken with 
respect to the new time level, so backward time differences 
are used. The second term in (4.2) represents a forward 
space difference of a weighted time average. In principle, one 
could use different pairs of weighting coefficients in the two 
terms in (4.2); however, the resulting difference operator 
would be equivalent to an operator of the same form for 
which the pairs are the same (see Lemma 1 of [9]). Numeri- 
cal experiments have shown that positive values of h can 
give slightly better absorption than h = 0. The value h -= 0.40 
was used in the numerical computations described in 
Section 5. 

The boundary condition (4. I ) can be discretized by 

where Di(E,, E,-‘) approximates p,a/dt - ca/dx. In the for- 
mula for D,, one could choose the weighting coefficient h to 
depend on j; however, this possibility is not likely to be 
significant in practice and will not be considered here. To 
implement (4.3), formally multiply the formulas for the D,‘s 
as polynomials in the symbols E, and E ,-’ and solve for the 
term that does not contain E, or E; I. That term 
corresponds to u,“;‘. The other terms correspond to values 
of u at nearby grid points. 

Before the operators D,(E,, E,-‘) in (4.3) are multiplied 
together, it is useful to reduce them to a simplified form. 
A manipulation of (4.2) yields 

=I+q,E,+q,E;‘+q,,E,E,-‘, (4.4) 

where q3-, q,, and q\-, are scalar constants defined by 

b(P+v)-v 

q’;=(p+v)(l -h) 

MB + v) -B 

q’=(p+V)(l-b) 

q x, = bl(b - 1). 

(45 1 

Here v = c At/Ax. In practice, one multiplies operators 
having the form of the right side of (4.4). 

We pause for a remark about implementation in layered 
media. The boundary condition (4.1) can be used in each 
layer, and in this case the difference approximations are the 
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same in all layers. On the other hand, consider a medium 
having two layers and suppose that one prefers to think in 
terms of the boundary condition 

being used in the lower layer. (In the upper layer, (4.1) is 
used.) Here, c’ is the appropriate velocity in the lower layer, 
and /Ij//3,’ = c/c’ for allj. For the difference approximation to 
the boundary condition in the lower layer, one obtains (4.4) 
and (4.5) with b and v replaced by /I’ and v’ = c’ At/Ax, 
respectively. In particular, one has 

b(/? + v’) - v’ 
q‘=(~‘+Y’)(l -h) 

h( (0’ + v’) - /?’ 
q’=(p’+v’)(l -h) 

for the lower layer. But the relation /I//?’ = c/c’ implies that 
these formulas are the same as in (4.5). The formulas that 
are actually programmed are thus identical in the two 
layers. 

In the case m = 2, the boundary condition (4.1) is 
discretized by using the operator 

D,(E,, Et-‘) D,(E,, E,-‘1, 

where p= 8, in D, and /I= p2 in D,. Let q.y, ql, and qx, 
denote the coefficients of E,, E ,- ‘, and E, E ; ‘, respectively, 
in the representation (4.4) of D,, and let rl, r,, and rxr 
denote the coefficients in the corresponding representation 
of D,. The q’s are defined by (4.5) with p=/?i; the r’s are 
defined similarly, with B = pz. 

The discrete boundary condition is then 

4$f’ = 701 q,;’ + Yo24y 

+ YlO~~, + ‘Jll &I + YlZ$, 

+ Yzo~&f’ + Yr1 4ji1 + Y22$iA (4.6) 

where 

YOI = -(4,x + TX) 

Yo2 = -q.rrx 

li’10= -(qr+r,) 

Y Il = - (qxrr + 47\- + ht + r.rl) 
(4.7) 

y12 = - (wTt + rxdx,) 

y20 = -q,r, 

yzl = - (qrrrr + r,q,,) 

~2~ = -qxrrxr. 

In the case of elastic waves, the same difference operator 
is applied to each component of displacement; for the case 
of the z-displacement u’, just replace each occurrence of the 
letter “u” in (4.6) with “us.” 

The notation in (4.6) and (4.7) includes a mechanism for 
checking for errors in coding. In the term involving ys in 
(4.7), the index i refers to the number of time shifts back- 
ward from time level N+ 1. The index i is also equal to the 
total number of subscripts “t” in each individual term in 
the formula for yii in (4.7). The index j plays a similar role 
regarding x-shifts and subscripts “x.” 

Difference approximations to third-order (m = 3) ver- 
sions of (4.1) can be obtained in a similar manner. Explicit 
formulas for this case are given in the Appendix of [ 111. 

Next consider boundary conditions for the boundary 
segment at x = B. For the earlier case, the inward normal 
direction is the positive x-direction; in the present case, 
the inward normal direction is the negative x-direction. 
The reversal of coordinate direction means that the 
boundary operator is a composition of factors of the form 
pa/at + cd/ax, which can be discretized by 

q) [(l -b)I+hE,‘] 

+c I-K’ 
i > 

- [(l -h)I+bE,-‘1. 
Ax (4.8) 

In the second term, a backward space difference is used. The 
difference operator (4.8) has the same form as the earlier dif- 
ference operator (4.2), except that E ,’ replaces E,. When 
operators of the form (4.8) are multiplied together, the same 
algebraic steps are performed as were done to obtain 
(4.4)-(4.7), and the final result has the same form as before. 
The interchange of E; ’ and E, means that backward space 
shifts are used instead of forward space shifts. That is, the 
same formulas are used for both of the boundaries x = A 
and x = B, where in each case the spatial shifts are taken in 
the inward normal direction. 

A similar remark applies to the boundary z = H. In this 
case, the spatial shifts are taken with respect to the 
z-direction instead of the x-direction. 

The above difference formulas also apply to three- 
dimensional problems. In notations of the form uJNM, an 
additional index needs to be inserted for the additional 
coordinate y. However, the boundary conditions still 
involve shifts only in t and in the inward normal direction, 
and the boundary conditions have the same form as in two 
dimensions. 

If a value of the solution at a corner of the domain is 
needed, it can be obtained directly from the boundary con- 
dition on one of intersecting boundary segments or planes; 
just apply the boundary condition right on up to the corner. 
Before this is done, the solution at neighboring points on 
the other segment or plane should be computed first. 
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4.2. Implementation of Free-Surface 
Conditions for Elastic Waves 

We now restrict attention to the case of elastic wave 
propagation. Suppose that the upper boundary 2 = 0 of the 
computational domain is free to move according to the 
internal dynamics of the medium. The surface of the earth is 
an example of such a surface. The freedom of motion can be 
expressed in terms of certain components of the stress 
tensor, and these statements then yield physical boundary 
conditions along the free surface. The numerical implemen- 
tation of the free-surface conditions at .Z = 0 must be coor- 
dinated with the implementation of the absorbing boundary 
conditions along the side boundaries .Y = A and .Y = B. This 
issue is typically encountered in the numerical modeling of 
elastic waves near the surface of the earth, and a free surface 
is included in the computational models described in 
Section 5. We therefore discuss these implementation issues 
in the present sub-section. 

The implementation is greatly facilitated by the one- 
dimensional finite difference stencil of the discrete absorbing 
boundary conditions that are used here. In the following 
discussions, most of the work is devoted to implementing 
the free-surface conditions themselves. Incorporating the 
absorbing boundary conditions requires relatively little 
additional effort. 

The analysis is stated in terms of two-dimensional 
problems because the computations described in Section 5 
involve two dimensions. For the sake of definiteness, 
assume that the elastic wave equation is discretized by 
standard centered second-order finite differences through- 
out the interior of the domain (see, e.g., Kelly et al. [ 131). 

We first formulate the free-surface conditions for the con- 
tinuous problem. For a linear, isotropic, two-dimensional 
elastic medium, the stress tensor is 

711 712 
7= c > 721 722 

= MI + 2/l 
c (u, +z,),2 

(4 + w.x)/2 
>; 

(4.9) w ; 

where i and p are the Lam6 parameters, u and w are the 
x- and z-displacements, 8 = U, + wZ, and I is the identity 
matrix (see, e.g., Bullen and Bolt [2]). Subscripts on u and 
w denote partial differentiations. Let (x, z) be any point in 
the medium, y a line through (x, z), and n a unit normal 
vector to 7 through (x, z). The “traction” T = tn is a vector 
that represents the force per unit length exerted at (x, z) on 
the portion of the medium bounded by y for which n is the 
outward normal. At a free surface, the traction must be zero. 
For the present configuration, II = (0, - l)=, so the free- 
surface conditions are r,2 = 0 and 222 = 0 at z = 0. 

More generally, we wish to allow the possibility of exter- 

nal forcing at the free surface: this is how the wave motions 
are generated in the numerical computations described in 
Section 5. We therefore implement the physical boundary 
condition Tn = (P(.v* t)% Q(.u, t))’ at z = 0. Here. P and Q 
represent the horizontal and vertical components of the 
applied force. According to (4.9), this boundary condition is 
equivalent to 

p(uz + IV.) = -P(x, t) 

(n+2/l)M.,+h,=-Q(x,t), 

or 

u,+w,= -p(x, f) 

w, + du 1 = - q(x, t), 
(4.10) 

where p = P/p, q = Ql(j. + 2~), and d= 1 - ~(c~/c~)~. The 
second equation in (4.10) uses the relation p/(n + 2~) = 
(c,/c,)*, which follows from (3.5). All of the terms in (4.10) 
are dimensionless. 

The first equation in (4.10) can be interpreted in terms of 
angles of rotation. If uZ > 0, then the horizontal displace- 
ment u increases with depth. A line which is vertical when 
the medium is at equilibrium must therefore be rotated 
counterclockwise. (We assume that the positive x-direction 
is to the right and the positive z-direction is down- 
ward.) Furthermore, U; z AU/AZ, and this latter quantity 
approximates the radian measure of the angle of rotation. If 
uZ < 0, then the rotation is clockwise. Similarly, if M’, > 0 
(w,. < 0), then a horizontal line is rotated clockwise (coun- 
terclockwise), and u’, approximates the angle of rotation. 
If p(x, r)=O in (4.10), then u,= -w,, and vertical and 
horizontal lines then experience the same magnitude and 
direction of rotation. 

The second equation in (4.10) involves u,~ and wi. These 
quantities can be regarded as rates of expansion or compres- 
sion in the x- and z-directions, respectively. If q(x, t) = 0, 
then U, and wZ have opposite signs, so a compression in one 
direction implies an expansion in the other. 

We now discuss the implementation of the free-surface 
conditions in (4.10). Assume that the displacements u and u 
at time t,+,= (N + 1) dt have been obtained at all grid 
points for which z 3 AZ; these quantities are supplied by the 
discretization of the elastic wave equation in the interior 
and the absorbing boundary conditions along the side 
boundaries x = A and x = B. A discretization of (4.10) is 
then used to obtain displacements at z = 0 at time t, + 1. 
This process can be regarded as an evolution in z from 
z1 = AZ to z0 = 0 for fixed 1. Numerical schemes that are 
explicit in z are straightforward to implement, but such 
schemes appear to be unstable when the velocity ratio cs/cP 
is sufficiently small (see Vidale and Clayton [22] ). Low 
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values of this ratio are found in materials of relatively low 
rigidity. We therefore use finite difference approximations to 
(4.10) that are implicit in z. 

Let xJ= A +J Ax, where Ax = (B-,4)/L. The side 
boundaries are then located at x,, and xL. The first equation 
in (4.10) can be approximated by 

Ntl 
‘J, 1 

N+ I 
- ‘J,O 

i 

N+I ,N+I 

+r wJ+ l,O- wJ- 1,O 

AZ 2Ax 

i 

= -d”J, IN+,) (4.11) 

for 1 < J 6 L - 1. The first term in (4.11) is an approxima- 
tion to u;. The second and third terms include approxima- 
tions to w, at z. = 0 and z, = AZ, respectively. A weighted 
average is then taken of these approximations, with 
weights r and 1 - r. If r = 1, then (4.11) resembles the 
Crank-Nicholson method; this discretization of the free- 
surface condition was used by Vidale and Clayton [22]. If 
r = 1, then (4.11) is a one-sided implicit approximation used 
by Sochacki et al. [20]. If r = 0, the method is explicit. The 
value r = $ was used in the numerical computations 
described in Section 5. The second equation in (4.10) can be 
approximated in a manner similar to (4.11). The difference 
approximations to (4.10) can also be written in the form 

+ (AZ) P(xJ, fN+ 1) 

= w’J.l N+l+(F)d($) [-u,“_‘,:,+u,“,‘,tJ 

+ (AZ) dxJ, t,+ I ). (4.12) 

Values of u and w at z. = 0 appear on the left sides of these 
equations, and they are regarded as unknown quantities in 
the present situation. Known quantities at z, = AZ appear 
on the right sides. 

The equations in (4.12) form a simultaneous system of 
linear equations that needs to be solved at each time step. 
The system contains 2L + 2 unknowns, namely, U$ ’ and 
WY,+ ’ for 0 d J < L. However, there are only 2L - 2 equa- 
tions, since the difference approximations in (4.11 k( 4.12) 

use centered differences in x and thus are applied at points 
xJ for which 1 $ J 9 L - 1. However, the number of 
unknowns can be reduced to the number of equations by 
employing the absorbing boundary conditions along the 
side boundaries at x0 = A and xL = B. 

Suppose that the absorbing boundary conditions for the 
left boundary x = A are applied at the upper left corner 
t-x o, zo) = (A, 0). Because of the one-dimensional stencil of 
the discrete absorbing boundary conditions, the difference 
formulas involve values of u and w along the free surface. 
The formulas for the first-order (m = l), second-order 
(m=2), and third-order (m= 3) versions of (4.3) can be 
written in the form 

(4.13) 

where g, , g,, and g, are constants; and g( u, N) and g( w, N) 
are known quantities involving values of u and w, respec- 
tively, at z. = 0 for times t < N At. The first subscript of u 
and w is the x-index, and the second is the z-index. For 
first-order boundary conditions, g, = g, = 0. Formulas for 
second-order boundary conditions are given in (4.6)-(4.7); 
in this case, g, = yol , g, = ‘J,,~, and g, = 0. 

At the upper right corner (x L, zo) = (B, 0), the absorbing 
boundary conditions of orders three or less can be written in 
the form 

ML,0 
N+l=,, 

1 UY’ :,. + h2U;1:.0 + h,u:+:,, + Mu, N) 

wN+‘=hlw~+~~o+h,w~~~~o+h,M’~~~,O+h(w,N). 
(4.14) 

LO 

Here, the symbol “h” is used instead of “g” in order to allow 
for the possibility of different boundary conditions being 
usedatx=Aandx=B. 

The formulas in (4.13t(4.14) can be used to eliminate 
the unknowns at the corner points from the linear system 
in (4.12), and the number of unknowns then equals the 
number of equations. The resulting linear system can be 
stated in matrix form as follows: Let 

uo=(uy, u&y, . ..) uy;,,,= 

wo = (wy,of l, w:,’ l, . ..) wy;,,)=, 

and let u, and w, denote the analogous quantities at 
z = zi. The vectors u. and w0 contain the unknowns in 
the system. Let B be the (L - 1) x (L - 1) tridiagonal 
matrix having zeros on the main diagonal, - l’s along the 
subdiagonal, and l‘s along the superdiagonal. Let G 
denote the (L - 1) x (L - 1) matrix in which the first 
row is [I-g,, -g,, -g,, 0, 0, . . . . 01, the last row is 
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[0, 0, . . . . 0, h,, hz, h,], and all other entries are zero. The 
linear system defined by (4.12t(4.14) can then be written in 
the form 

where 

[B+G]w,=b, 

we-;(z) [B+G] u,=b,,, 

b,=u, +(y)(-$) Bw, 

+(+y%) 
0 
Ni I 

H‘L. I 

+Az 

(4.15) 

(4.16) 

The vector b, can be obtained from b, by interchanging the 
roles of the symbols “u” and “w,” replacing p with q, and 
inserting a factor d in each term that involves the ratio 
AZ/AX. The above formulation of the linear system is related 
to one used by Vidale and Clayton [22]; a main difference 
is that the formulation in [22] does not incorporate the 
effects of absorbing boundary conditions into the linear 
system. 

The system (4.15) could be written as a (2L-2) x 
(2L- 2) linear system with solution vector (UT, wz)‘. 
However, it is more convenient to use the special structure 
of (4.15) to eliminate either u. or w. and then solve a system 
of dimension (L - 1) x (L - 1). For example, one can solve 
for w. in the second equation in (4.15) and insert the result 
into the first equation to obtain 

[I-d(;)‘($$ [B+G,‘]u, 

=b,+ ; $ [B+G]b,.. 
O( ) 

(4.17) 

HIGDON 

The matrix B is tridiagonal. The matrix G is tridiagonal 11 
the absorbing boundary conditions are of order 2 :.)r less, 
and G is pentadiagonal if the absorbing boundary condo- 
tions have order 3. The matrix (B-t G)’ therefore has ;II 
most four nonzero diagonal bands above the main diagonal 
and at most four nonzero bands below the main diagonal. 
The coefficient matrix in (4.17) can therefore be factored 
and stored efficiently. Once II,, is calculated. the result can bc 
inserted into the second equation in (4.15) to yield an 
explicit formula for w,,. The computation of w. does not 
require the solution of a linear system. 

The above process yields the values of u and ~1‘ at all 
grid points on the free surface, except those at the corner 
points ( sg, zo) = (A, 0) and (.Y,,, r,)) = (B, 0). The corner 
values can now be calculated explicitly using the absorbing 
boundary conditions given in (4.13) and (4.14). 

4.3. Implementation of Interface 
Conditions for Elastic Waves 

Now consider an elastic medium consisting of 
homogeneous layers separated by parallel horizontal inter- 
faces. Across each interface, some or all of the material 
parameters p, & and p in (3.1) are discontinuous, and these 
discontinuities can then yield discontinuities in the wave 
speeds cP and (‘s. One method of handling the variation in 
the medium is to apply the constant-coefficient version of 
the elastic wave equation in each homogeneous region and 
then connect these regions by implementing physical 
boundary conditions across each interface. An alternative is 
to discretize the variable-coefficient version (3.1 ) of the 
elastic wave equation and apply it throughout the entire 
computational domain. Kelly et al. [ 131 state that this gives 
good results when interfaces are present. However, in some 
of the numerical computations described in Section 5, there 
are extreme contrasts between adjacent layers. Instead of 
applying the variable-coeffkient equation across such 
strong discontinuities, we used the first approach described 
above. In the present sub-section, we describe how the inter- 
face conditions were implemented in those computations. 
The method is very similar to that developed in Section 4.2 
for a free surface, so that interfaces and a free surface can be 
handled in a unified manner when writing computer 
programs. In particular, the absorbing boundary conditions 
along the side boundaries are incorporated into the algo- 
rithm in the same manner as before. 

As in Section 4.2, the analysis is stated in terms of two- 
dimensional problems, and the computational domain is a 
rectangle defined by A < x d B and 0 < : < H. A free surface 
is assumed to be located at the upper boundary ; = 0. Also 
suppose that a horizontal interface is located at = = Z > 0. In 
the layer immediately above the interface, let p, 1, and ~1 
denote the material parameters, T denote the stress tensor, 
cp and cs denote the wave speeds, and u and w denote 
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the horizontal and vertical displacements. Denote the 
corresponding quantities in the lower layer by p’, i’, p’, T’, 
c’ P, c[,, u’, and PV’, respectively. 

The interface conditions for the continuous problem can 
be described as follows. First, the two layers are assumed to 
be in welded contact, so the components of displacement 
must be continuous across the interface. Thus 

u = u’, M’ = w’ at ; = Z. (4.18a) 

Second, let n = (0, - 1 )T. The tractions in the two layers 
must satisfy T n + r’( -II) = 0 at the interface. A comparison 
with (4.9) yields 

p(u, + M’,) = p’(l.4; + w:) 

(2 + 2p) U’: + E”U, = (A’ + 2/L’) w; + 2’24: 
(4.18b) 

at z= Z. 
We now describe a method for implementing the condi- 

tions (4.18) numerically. The method uses an approxima- 
tion to (4.18b) that is implicit in z, and the resulting 
algorithm is a generalization of an explicit method used by 
Kelly et al. [ 131. 

The method uses overlapping grids for two adjacent 
layers. At an interface, introduce an extra horizontal row of 
grid points, so that the lower two grid rows for the upper 
layer refer to the same positions in space as the upper two 
grid rows for the lower layer. For example, suppose that the 
upper layer corresponds to z dzM, and suppose that the 
extra grid row is located at z = zMP, and is associated 
with the lower layer. The lower layer thus corresponds to 
z>,z,-,. We can then formulate difference approximations 
to (4.18b) that involve values of the solution at z,+, and 
ZM-1. Because of the overlapping grids for the two layers, 
the difference approximations to each side of each equation 
in (4.18b) refer to the same positions in space; this would 
not be the case without the overlap. 

For later purposes, it is convenient to store the solution 
as follows: For each component of displacement, store the 
solution at a given time level in a rectangular array. This 
array corresponds to all grid points for all layers, except 
those on the extra rows associated with the various inter- 
faces. The latter can be stored in separate vectors. 

Suppose that the solution is known at time t, = N At 
throughout the computational domain. The solution at time 
t,,,+ 1 can then be computed as follows. In a vicinity of 
the interface discussed above, the solutions for z < zM and 
Z>ZM can be computed by using the elastic wave equation 
in the upper and lower layers, respectively. In order to com- 
pute the solution at z = zM, use the elastic wave equation for 
the lower layer; the solution at time t,,, along the extra grid 
row is used at this stage. The displacements computed at zM 
can then be regarded as displacements for the lower layer. 

However, they are stored in the rectangular arrays men- 
tioned above; and during the computation for the following 
time level, these values will be used in the computations for 
both the upper and lower layers. Because of this storage 
arrangement, the displacements computed at z,,, are also 
regarded as displacements for the upper layer. The condi- 
tions in (4.18a), which specify continuity of displacements 
across the interface, are therefore satisfied implicitly. 

There still remains the task of computing solutions at the 
extra row of grid points for time t, + , ; for this we use the 
stress conditions in (4.18b). These can be written as 

P u;+w:,= -y 7 ( I( cs 
cs > 2 (u,+ w,) 

P 

w; + (1 - 2(c;/c’p)Z) u: (4.19 

P = ( >( 7 
P 

z > 2 [w,+ (1 -2(c&p)2) U,]. 

These conditions use the relations p = pci and A + 2~ = PC; 
which follow from (3.5). The stress conditions in (4.19) have 
the same form as the forced free-surface conditions in (4.10) 
and the stresses on the right sides of (4.19) can then be 
regarded as forcing terms acting on the lower layer. Because 
of this similarity, the implementation of (4.19) is very 
similar to that of (4.10). The derivatives on the left sides of 
(4.19) can be approximated by finite differences in a manner 
similar to (4.11). The right sides can also be approximated 
by finite differences, and the resulting approximations play 
a role analogous to that of p and q in (4.11 b(4.12). 

In the method described above, the extra row of grid 
points is located at z,,,, ~, and is associated with the lower 
layer. This choice is rather arbitrary. One could also locate 
the extra row at z,+, + 1 and associate it with the upper layer. 
The upper and lower layers would then correspond to 
z < zM+ i and 2 3 zM, respectively, and finite difference 
approximations to the stress conditions would use dis- 
placements at z = zM and z = z,,,+ i. In the analogue of 
(4.19), stresses in the upper layer would be written in terms 
of stresses in the lower layer, instead of vice versa. This 
approach could be useful if the factors (p/p’)(cs/ck)’ and 
(p/p’)(cP/c>)’ in (4.19) are large due to extreme contrasts 
between the two layers. The formulas for this case are very 
similar to the ones developed earlier, and we omit the 
details. 

5. NUMERICAL COMPUTATIONS 
INVOLVING ELASTIC WAVES 

The absorbing boundary conditions developed in this 
paper are now applied to some test problems involving 
elastic waves. In all of the tests, the computational domain 
is a two-dimensional region having the form 0 dx< B, 
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0 d z d H. A free surface is located at z = 0, and waves are 
generated by external forcing at this boundary. Absorbing 
boundary conditions are applied along the other boundary 
segments. The absorbing boundary conditions are found 
to give effective absorption of P-waves and S-waves 
propagating through the interior of the medium. At the side 
boundaries, they also are effective in absorbing Rayleigh 
waves that propagate along the free surface z = 0. 

Three series of computations are described here. In these 
tests, the media have the following configurations: 

(1) Uniform medium. 
(2) Layered medium, with waves moving downward 

into slower layers. In the slower layers, the velocity ratio 
cs/cp is very low. 

(3) Layered medium, with waves moving downward 
into a faster layer. The wave system includes head waves 
moving along the interface. 

In the second and third tests, there are strong velocity 
contrasts between adjacent layers. 

The forced free-surface conditions have the form (4.10), 
where p(x, t) = 0 for all (x, t), 

q(x, t) = cos* 
(%,f ‘) 

x cos* 
n(t-(No+ 1)dt 

2N, At 
(5.1) 

when (x - Cl d Jo Ax and 1 t - (N, + 1) AtJ <N, At, and 
q(x, t) = 0 otherwise. The source term q(x, t) is a smooth 
function that is centered in space at x = C and has duration 
ZJ, Ax and 2N, At in x and t, respectively. The horizontal 
component of the applied force is zero, and the vertical com- 
ponent is positive when it is nonzero. The applied force is 
therefore a downward push at z = 0, and it has finite extent 
in x and t. At time t = 0, the displacements and their first- 
order time derivatives are assumed to be zero throughout 
the computational domain. 

In order to determine the effectiveness of the absorbing 
boundary conditions, we compute exact (reflectionless) 
solutions and compare them with the solutions computed 
with absorbing boundary conditions. The reflectionless 
solutions are computed on domains that are much larger 
than the domain 0 <x < B, 0 <z < H; for these computa- 
tions, the computational boundaries are chosen so that 
reflections from those boundaries cannot reach the domain 
0 <x d B, 0 d z < H during the time interval on which the 
solutions are computed. These solutions are then restricted 
to 0 d x < B, 0 <Z 6 H. In the following discussions, solu- 
tions are compared by plotting graphs and by calculating 
the quantity 

((u-u,)2+(M’--w,)2)1’2 (5.2) 

at each grid point in (.Y, Z) for various fixed times. Here, 
(u, 1i.J denotes the solution computed with absorbing 
boundary conditions, and (u,,, M‘,,) is the exact (reflec- 
tionless) solution; (5.2) is thus the length of the error vector. 
Discrete L’ norms (in (.r, z)) of functions of the form i5.2) 
are then used as a measure of the accuracy of (u, n.1 as an 
approximation to (Al,., M’,,). 

In these computations. the elastic wave equation is 
approximated by standard centered second-order finite 
differences (see, e.g., Kelly c/ al. [ 131). The absorbing 
boundary conditions, free-surface conditions, and interface 
conditions are implemented in the manner described in 
Section 4. Dimensionless space and time coordinates are 
used throughout these tests. 

Test 1. ChCfbrm medium. We first consider waves 
propagating through a homogeneous medium. In this test, 
the computational domain is defined by 0 <x 6 2 and 
0 d z d 3. The forcing function (5.1) is centered at .Y = 1, its 
width in x is eight grid intervals, and its duration in time 
is 12 time steps. The wave speeds are cp = 1 and 
cs = 1 j$t 0.577; the grid spacings are Ax = AZ = &,, and 
the Courant number is cp At/Ax = 0.80. The value of the last 
parameter guarantees that the interior difference equation 
satisfies the von Neumann stability condition (see, e.g., Aki 
and Richards [ 11). 

Solutions computed with various boundary conditions 
are plotted in Figs. 5.1, 5.2, and 5.3. Horizontal dis- 
placements are shown in the graphs on the left sides of the 
figures, and vertical displacements are shown on the right. 
Each curve represents the values of a quantity (i.e., horizon- 
tal or vertical displacement) along a vertical line through 
the medium. At points where a curve lies to the left of its 
equilibrium position, a negative value is plotted; if a curve 
lies to the right of equilibrium, a positive value is plotted. In 
plots of horizontal displacement, the wiggles in the graph 
can be interpreted literally as displacements in the medium; 
negative displacements represent leftward movement, and 
positive displacements represent rightward movement. In 
plots of vertical displacement, a positive displacement 
represents a downward movement, and a negative displace- 
ment represents an upward movement. For the sake of 
visibility, the displacements were multiplied by a factor of 10 
when these graphs were plotted. In order to keep the curves 
from being too crowded, the displacements were plotted at 
every other grid point in X. 

The exact solution at times t = 1.5 and t = 2.5 is shown 
with solid curves in Fig. 5.1. Solutions using absorbing 
boundary conditions are also plotted with dashed lines in 
that figure; these will be discussed later. The figure shows 
two different waves that are moving downward through the 
medium. The leading wave is a P-wave, and the trailing 
wave is an S-wave. By checking signs of displacements, one 
can verify that the particle displacements are parallel to the 
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FIG. 5.1. Test 1. Uniform medium. The solid curves show the exact (reflectionless) solution that is obtained by computing on a much larger region. 
The dashed curves show the solution obtained with the second-order (m = 2) absorbing boundary condition, with /?, = 1 and /32 = cp/cs = fi. This 
choice of parameters yields exact absorption of P-waves and S-waves traveling at normal incidence. However, along the side boundaries, these waves 
are not close to normal incidence. This figure illustrates that the performance of the boundary conditions is not sensitive to the choice of parameters. 
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direction of propagation in the case of the P-wave, and they 
are perpendicular to the direction of propagation in the case 
of the S-wave. The source term used here also excites strong 
Rayleigh waves moving along the free surface. These are 
visible at time t = 1.5. The Rayleigh waves are moving 
outward, and by time t = 2.5 they have left the domain that 
is shown here. 

Figure 5.2 shows the solution that is obtained when the 
homogeneous Dirichlet boundary condition u = M’ = 0 is 
used along the side and bottom boundaries. This boundary 
condition is totally incompatible with the solution that is 
sought, and the incompatibility generates strong reflections 
back into the interior. For example, in the P-wave that is 
moving downward and outward, the vertical displacements 
are positive. However, the displacements are required to be 
zero at the side boundaries. Since the given P-wave does not 
satisfy this constraint, something else has to be included in 
the solution so that the superposition does satisfy the 
boundary condition. This is the cause of the reflection; near 
each side boundary, one can see an incoming wave having 
a negative vertical displacement, and the superposition 
equals zero at the boundary. Similarly, the S-wave and 
Rayleigh waves generate strong reflections from the com- 
putational boundary. The reflected waves then propagate 
throughout the computational domain and destroy the 
validity of the solution that is computed there. 

The dashed curves in Fig. 5.1 illustrate the solution that is 
obtained with the second-order (m = 2) version of the 
boundary operator (3.7) with /J, = 1 and /I1 = cp/cs= 
fi G 1.732. This solution agrees closely with the exact solu- 
tion. On portions of curves where dashed lines are not 
visible, the two solutions agree to within the width of the 
plotter lines. Because of the choices of the parameters /I1 and 
/IZ, the boundary condition yields exact absorption of 
P-waves and S-waves travelling at normal incidence to the 
boundary. However, the downgoing P- and S-waves are 
travelling in directions that are far from normal incidence at 
the side boundaries. This illustrates comments made in 
earlier sections about the boundary conditions not being 
sensitive to the choices of parameters. 

The plots also show that the outgoing Rayleigh waves are 
absorbed effectively. This is due to the fact that the speed of 
Rayleigh waves is close to that of S-waves; when c,/c,= 
1:$, CR k 0.92c.s. Because of this situation, the first-order 
factor in (3.7) that yields exact absorption of normally 
incident S-waves also yields high absorption of Rayleigh 
waves. 

The amount of reflection at time t = 1.5, as measured by 
the discrete L* norm of (5.2), is approximately 2.1% of the 
L* reflection generated by the Dirichlet boundary condition. 
At time t = 2.5, the reflection is 6.8 %. At time t = 5.0, the 
reflection is 9.6 %. 

Figure 5.3 shows the exact solution and the solution com- 
puted with the third-order (m = 3) version of the boundary 

operator (3.7). with /?, = 1, /iZ = ,; 5, and /il = I.!. 1 tic 
agreement between the two solutions is a little closer than III 
Fig. 5.1. The L’ reflections are 0.4 % at time t = I .5. 2.9 “;, :tt 
t = 2.5, and 10.5 % at t = 5.0. 

An additional test was performed with a variable-angle 
second-order boundary condition in which the boundary 
operator (3.7) at each point on the side boundaries was 
tuned to waves moving from the source point. The 
parameters b, and bZ were thus functions of ;. One factor in 
(3.7) was tuned to P-waves. and the other was tuned to 
S-waves. The results were not quite as good as with the con- 
stant-coefficient boundary conditions used above. The L-! 
reflections were 2.2 % at time t = 1.5. 8.7% at t = 2.5, and 
15.5 % at t = 5.0. 

Test 2. Lqered medium, with waves moving downwurd 
into slower layers. In this test, the computational domain 
is defined by 0 d x d 2 and 0 d 2 ,< 3, and the medium con- 
sists of five homogeneous layers separated by horizontal 
interfaces. In the top, third, and fifth layers, cp = 1 and 
cs/cp= l/,/3& 0.577. In the second and fourth layers, 
cp = 0.5 and cs/cp = 0.10. Except for the two slow layers, the 
medium is the same as in Test 1. The interfaces between the 
layers are located at I’ = 1. I= 1.5, r = 2, and z = 2.5. The 
density of the medium is the same in all layers, 

The low value of cs/cp in the second and fourth layers 
was chosen in order to illustrate a stability property of the 
absorbing boundary conditions. According to some empiri- 
cal studies [4, 171, various earlier absorbing boundary con- 
ditions may be unstable if the velocity ratio is sufficiently 
low. A typical threshold for instability appears to be in the 
range 0.42-0.46. The value l/v;;? is approximately equal to 
common ratios for hard rock in the earth, and lower values 
of the ratio are associated with less rigid materials. Values 
below the stability threshold are found in some materials of 
physical interest, including some that are encountered in 
seismic petroleum exploration. Further discussion of this 
issue is given in [ lo]. The value cs/cp = 0.10 was chosen for 
the present computations in order to give a severe test of the 
boundary conditions discussed in the present paper. In 
[lo], the stability of these boundary conditions is analyzed 
for the case of a homogeneous medium, and the boundary 
conditions are shown to satisfy the stability criterion of 
Kreiss [ 151 for arbitrary values of the velocity ratio. The 
present numerical experiment suggests stability in the case 
of a layered medium. Stable behavior and effective absorp- 
tion were also observed when the limiting value c.~/c.~, = 0 
was used in the two slow layers. However, the solutions for 
that case are not shown here because the computational 
model used in this paper is not physically reasonable in that 
case. If cs/cp = 0, then ,U = 0; the medium in such a layer is 
an inviscid fluid, and at an interface it is not realistic to 
require continuity of tangential displacements as in (4. I Sa). 

In these tests, the grid spacings are Ax = AZ = &,, and the 
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FIG. 5.2. Test 1. Solution obtained with the homogeneous Dirichlet boundary condition u = w = 0. Strong reflections are present in this solution. 
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FIG. 5.3. Test 1. Solid curves show the exact solution. Dashed curves are used to plot the solution obtained with the third-order (m = 3) boundary 
condition, with fi, = 1, j12 = cP/cS = ,,6, and jl, = 1.3. In most places, the dashed curves are not visible because the solutions agree to within the widths 
of the plotter lines. 
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FIG. 5A. Test 2. Layered medium. If 1 <z < 1.5 or 2 <z < 2.5, then the P-wave velocity is one-half the P-wave velocity elsewhere, and cS/cp = 0.10. 
In al1 other layers, cS/cp = I/,/‘? = 0.577. This is a severe combination of circumstances, due to the strong velocity contrasts between layers and the low 
value of cS/cp in two of the layers. The plots show the exact solution and the solution computed with the second-order boundary condition with B1 = 1 
and 8s = fi. 
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FIG. 5.5. Test 2. Long-time behavior, third-order boundary condition with /3, = 1, p2 = fi, and /3, = 3. The solutions at time f = 1.5 are not shown 
because they are indistinguishable from the solutions at r = 1.5 shown in Fig. 5.4. By time t = 5.0, the primary reflections have long since returned to the 
surface, and the remaining activity consists mainly of slow S-waves in the second and fourth layers. 
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time step is Ar = &. The Courant number cP At/Ax is thus I = 1.5, the L* reflection is 1.8 O/O of the L* reflection 
0.8 in the fast layers and 0.4 in the slow layers. The source produced by the homogeneous Dirichlet boundary condi- 
term (5.1) is centered at x = 1, its width in x is eight grid tion. The reflection is 9.3 % at time t = 3.0, 13.5 % at time 
intervals, and its duration in time is 24 time steps. In the t = 4.0, and 23.1 % at time t = 5.0. The third-order (m = 3) 
plots shown in Fig. 5.4, the displacements are amplified by version of (3.7) was also used, with fil = 1, f12 = fi, and 
a factor of 10 for the sake of visibility. The solution is plotted b3 = 1.3. In this case, the L2 reflections are 0.3 % when 
at every fourth grid point in x. t= 1.5, 3.1% when t=3.0, 5.6% when r=4.0, and 11.0% 

In Fig. 5.4, the solid curves show the exact solution at when t = 5.0. 
times t = 1.5 and t = 3.0. The dashed curves show the solu- In these computations, the errows grow with time. This 
tion obtained with the second-order (WI = 2) version of the 
boundary operator (3.7), with fi, = 1 and /3, = J’?. At time 

might not be of great significance, since by time r = 5.0 the 
primary reflections have long since returned to the surface, 

Horizontal dlsplacsmant 

Exact solution and absorbing B.C., t = 1.0 

Horizontal displacement 

Exact solution and absorbing B.C., t = 1.2 

Horizontal dlsplbcamsnt 

Exact solution and absorbing B.C., t = 1.4 

I I 2 
I- 

I 

FIG. 5.6. Test 3. Layered medium. An interface is located at z = 0.5, and the P-wave velocity in the lower layer is twice the P-wave velocity in the 
upper layer. In each layer, cs/cp = l/d. 
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and the remaining activity consists mainly of slow S-waves 
in the second and fourth layers (see Fig. 5.5). However, the 
following remarks may be of interest. 

Growth of error has been found regularly in two-dimen- 
sional computations. For example, see Figs. 7.1 and 7.2 of 
[lo]; in those computations, growth of error was encoun- 
tered with the boundary conditions developed in [lo] and 
with the second-order boundary condition of Clayton and 
Engquist [3]. For the computations performed during the 
present tests, some plots of the solutions for t = 5.0 (not 
shown here) show that the main error is smooth and is 
located away from regions of significant wave activity. The 
effect is similar to, but more pronounced than, the error 
seen just above z = 1 in the plot of horizontal displacement 
at time t = 3.0 in Fig. 5.4. The smoothness and location of 
the error suggests that it may be related to the fact that 
Huyghens’ principle does not hold in two dimensions; a 
sharp pulse is not propagated by a sharp signal, but instead 
the wave front is followed by a gradual decay. This effect is 
quite visible in the waves that are generated by the source 
used here. For example, see the vertical displacements near 
the free surface in Fig. 5.1 at t = 2.5 and in Fig. 5.4 at t = 1.5. 

Because of these considerations, an additional experiment 
was performed with the third-order version of the boundary 

Hcrlzontsl dlmplacc..nt ia.plrfI.di 

Exact solution and absorbing B.C.. t 1.4 

I -  

operator (3.7), with p, = 1. /i? = \j 3, and /j3 = 3. The large 
value of p, corresponds to tuning the third factor in (3.7 ) to 
slowly moving waves; this choice is based on the idea of 
trying to absorbing slowly moving tails behind the main 
wave fronts. The L’ reflections are 0.95 % when I 1.5, 
4.0% when t = 3.0, 5.3% when f = 4.0. and 7.0% when 
I = 5.0. The results are better than those obtained with the 
second-order boundary condition. Also, with this choice of 
parameters in the third-order condition, there is better long- 
time behavior than with the choice mentioned earlier. The 
solutions at times t = 3.0 and t = 5.0 are plotted in Fig. 5.5. 

Test 3. Layered medium, with wuws mooing do,~*rwwrd 
into ufaster luyer. In this test, the computational domain 
is defined by 0 d x d 3 and 0 6 z d 1. The medium consists 
of two layers, with cP = 1 in the upper layer and cP = 2 in the 
lower layer. The interface is located at r = 0.5. Within each 
layer, the velocity ratio is es/c,, = l/$. The densities are 
the same in the two layers. 

The grid spacings are dx = A,- = A, and the time step is 
At = I&. The Courant number cp At/Ax is thus equal to 0.4 
in the upper layer and 0.8 in the lower layer. The source 
term is centered at x = 2, and its durations in .Y and t are 
eight grid intervals and 24 time steps, respectively. 

Horlzonta, d,ap,&c...nt lrmpllf!.dl 

Exact solution dnd absorbing B.C.. t = 

I -  

1 6 

FIG. 5.7. Test 3. Close-up view of the left end of the computational domain. The solutions are plotted for 0 G x Q 0.4, and the displacements are 
amplified three times as much as in Fig. 5.6. The smooth error seen at time r = 1.6 is apparently related to Huyghens’ principle; see the discussion of Test 2. 
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The horizontal displacements in the exact solution are 
shown by the solid curves in Fig. 5.6. By time t = 1.0, the 
downgoing P-wave generated by the source at the free sur- 
face has contacted the interface and has generated a trans- 
mitted P-wave and a transmitted S-wave into the lower 
layer. Upward reflections from the interface are also visible. 
The downgoing S-wave in the upper layer has also con- 
tacted the interface. The transmitted P-wave travels much 
more rapidly than all of the other waves in this system, due 
to the higher velocity in the lower layer, so it moves ahead 
of the other waves. At the point where this wave contacts the 
interface, the lower medium exerts forces on the upper 
medium and thereby generates waves that propagate into 
the upper medium. These waves, known as head waves, are 
visible in each of the plots in Fig. 5.6. There are two such 
waves; one is a P-wave, and the other is an S-wave. 

horizontal near the interface, so this part of the solution is 
not very visible in plots of vertical displacement. 

In the computations that are shown here, the second- 
order (m = 2) version of the boundary operator (3.7) was 
used along the side boundaries, with parameters /I, and pZ 
chosen as follows. Along the interface, the head waves have 
the same apparent velocity as the P-wave that generates 
them. The boundary conditions used here are based on the 
apparent velocity, and we therefore chose fll so that it 
would give exact absorption of a normally incident P-wave 
in the lower layer. In the form (3.8) of the boundary 
operator for the lower layer, this would mean fl’, = 1. For 
the form (3.7), this is equivalent to fl, = 0.5, since the 
P-wave velocity is twice as large in the lower layer as it is in 
the upper layer. The other parameter fi2 was chosen rather 
arbitrarily to be ,,/?. 

In Fig. 5.6, the displacements are amplified by a factor of Along the bottom boundary, a third-order (m = 3) 
100 instead of 10 in order to make the head waves more boundary condition was used. P-waves and S-waves near 
visible. The solution is plotted at every fifth grid point in x. normal incidence are clearly an important issue in this case; 
The vertical displacements are not shown here because the so, in terms of (3.8), we used fi; = 1 and & = fi. However, 
main features of the solution are much more visible in the when the P-wave in the lower layer approaches the lower 
horizontal displacements. In particular, the particle dis- left corner, its angle of incidence to the bottom boundary is 
placements in the P-wave in the lower layer are nearly not even remotely close to normal incidence. We made a 

Horizontal dl.plac..ent lanpllflcdl Horlrcmtal dl.plbcmmt lanplrf,.dl 

Dirlchlet B.C. t = 1.4 Dlrichlet B.C.. t = 1.6 

FIG. 58. Test 3. Solution using the Dirichlet boundary condition u = w = 0 along the side and bottom boundaries. Same plotting format as in 
Fig. 5.1. 
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rough guess of 70”, and then used j3; = cos 70”. For the 
equivalent boundary operator (3.7), the parameters are 
a, = 0.5, 82 = 432, and p3 = (cos 70”)/2. In some addi- 
tional tests, the third factor in the boundary operator was 
omitted. In this case, a slightly larger reflection was seen 
near the lower left corner; otherwise, the performance was 
very similar to the third-order case. 

ters discussed in this paper. This material is based upon work supported bv 
the National Science Foundation under Grant No. DMS-8802649. 
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